已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

3D-EddyNet: A Novel Approach for Identifying Three-Dimensional Morphological Features of Mesoscale Eddies in the Ocean

中尺度气象学 涡流 计算机科学 地质学 规范化(社会学) 人工智能 气象学 地理 气候学 湍流 社会学 人类学
作者
Pufei Feng,Zhiyi Fu,Linshu Hu,Sensen Wu,Yuanyuan Wang,Feng Zhang
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:11 (9): 1779-1779 被引量:1
标识
DOI:10.3390/jmse11091779
摘要

Mesoscale eddies are characterized by swirling currents spanning from tens to hundreds of kilometers in diameter three-dimensional attributes holds paramount significance in driving advancements in both oceanographic research and engineering applications. Nonetheless, a notable absence of models capable of adeptly harnessing the scarcity of high-quality annotated marine data, to efficiently discern the three-dimensional morphological attributes of mesoscale eddies, is evident. To address this limitation, this paper constructs an innovative deep-learning-based model termed 3D-EddyNet, tailored for the precise identification and visualization of mesoscale eddies. In contrast to the prevailing 2D models that remain confined to surface-level data, 3D-EddyNet takes full advantage of three-dimensional convolutions to capture the essential characteristics of eddies. It is specifically tailored for recognizing spatial features within mesoscale eddies, including parameters like position, radius, and depth. The combination of dynamic convolutions and residual networks effectively enhances the model’s performance in a synergistic manner. The model employs the PReLU activation function to tackle gradient vanishing issues and improve convergence rates. It also addresses the challenge of foreground–background imbalance through cross-entropy functions. Additionally, to fine-tune the model’s effectiveness during the training phase, techniques such as random dropblock and batch normalization are skillfully incorporated. Furthermore, we created a training dataset using HYCOM data specifically from the South China Sea region. This dataset allowed for a comprehensive analysis of the spatial-temporal distribution and three-dimensional morphology of the eddies, serving as an assessment of the model’s practical effectiveness. The culmination of this analysis reveals an impressive 20% enhancement over 3D-UNet in detection accuracy, coupled with expedited convergence speed. Notably, the results obtained through our detection using empirical data align closely with those obtained by other scholars. The mesoscale eddies within this specific region unveil a discernible northeast-to-southwest distribution pattern, categorized into three principal morphological classifications: bowl-shaped, olive-shaped, and nearly cylindrical, with the bowl-shaped eddies prominently dominating.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯嗯完成签到,获得积分10
刚刚
126发布了新的文献求助10
3秒前
4秒前
小柚茶完成签到,获得积分10
4秒前
AMENG完成签到,获得积分10
8秒前
8秒前
长安完成签到 ,获得积分10
10秒前
行7发布了新的文献求助10
13秒前
14秒前
qiandi完成签到 ,获得积分10
14秒前
16秒前
18秒前
貔貅发布了新的文献求助10
19秒前
SCI完成签到,获得积分10
19秒前
21秒前
coldstork完成签到,获得积分10
22秒前
达尔文完成签到 ,获得积分10
23秒前
23秒前
sllytn完成签到 ,获得积分10
24秒前
25秒前
轻松雨旋完成签到 ,获得积分10
25秒前
shjyang完成签到,获得积分0
25秒前
zzz发布了新的文献求助10
26秒前
不能熬夜完成签到,获得积分10
27秒前
总是很简单完成签到 ,获得积分10
29秒前
传统的逊发布了新的文献求助10
30秒前
英俊的铭应助wzy采纳,获得10
31秒前
胡杨柳完成签到,获得积分10
31秒前
Ammr完成签到 ,获得积分10
34秒前
tuanheqi应助大方明杰采纳,获得200
34秒前
天天快乐应助Dandy采纳,获得10
34秒前
gao0505完成签到,获得积分10
35秒前
达尔文1完成签到 ,获得积分10
35秒前
35秒前
完美世界应助自由的尔蓉采纳,获得10
35秒前
科研互通完成签到,获得积分10
36秒前
37秒前
37秒前
38秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680971
求助须知:如何正确求助?哪些是违规求助? 5002580
关于积分的说明 15174351
捐赠科研通 4840670
什么是DOI,文献DOI怎么找? 2594326
邀请新用户注册赠送积分活动 1547419
关于科研通互助平台的介绍 1505318