3D-EddyNet: A Novel Approach for Identifying Three-Dimensional Morphological Features of Mesoscale Eddies in the Ocean

中尺度气象学 涡流 计算机科学 地质学 规范化(社会学) 人工智能 气象学 地理 气候学 湍流 社会学 人类学
作者
Pufei Feng,Zhiyi Fu,Linshu Hu,Sensen Wu,Yuanyuan Wang,Feng Zhang
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:11 (9): 1779-1779 被引量:1
标识
DOI:10.3390/jmse11091779
摘要

Mesoscale eddies are characterized by swirling currents spanning from tens to hundreds of kilometers in diameter three-dimensional attributes holds paramount significance in driving advancements in both oceanographic research and engineering applications. Nonetheless, a notable absence of models capable of adeptly harnessing the scarcity of high-quality annotated marine data, to efficiently discern the three-dimensional morphological attributes of mesoscale eddies, is evident. To address this limitation, this paper constructs an innovative deep-learning-based model termed 3D-EddyNet, tailored for the precise identification and visualization of mesoscale eddies. In contrast to the prevailing 2D models that remain confined to surface-level data, 3D-EddyNet takes full advantage of three-dimensional convolutions to capture the essential characteristics of eddies. It is specifically tailored for recognizing spatial features within mesoscale eddies, including parameters like position, radius, and depth. The combination of dynamic convolutions and residual networks effectively enhances the model’s performance in a synergistic manner. The model employs the PReLU activation function to tackle gradient vanishing issues and improve convergence rates. It also addresses the challenge of foreground–background imbalance through cross-entropy functions. Additionally, to fine-tune the model’s effectiveness during the training phase, techniques such as random dropblock and batch normalization are skillfully incorporated. Furthermore, we created a training dataset using HYCOM data specifically from the South China Sea region. This dataset allowed for a comprehensive analysis of the spatial-temporal distribution and three-dimensional morphology of the eddies, serving as an assessment of the model’s practical effectiveness. The culmination of this analysis reveals an impressive 20% enhancement over 3D-UNet in detection accuracy, coupled with expedited convergence speed. Notably, the results obtained through our detection using empirical data align closely with those obtained by other scholars. The mesoscale eddies within this specific region unveil a discernible northeast-to-southwest distribution pattern, categorized into three principal morphological classifications: bowl-shaped, olive-shaped, and nearly cylindrical, with the bowl-shaped eddies prominently dominating.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aodilee完成签到,获得积分10
1秒前
zho发布了新的文献求助10
1秒前
1秒前
1秒前
打打应助N型半导体采纳,获得10
1秒前
科研小白发布了新的文献求助10
1秒前
czz完成签到,获得积分10
2秒前
望开心顺利毕业完成签到,获得积分10
2秒前
ruogu7完成签到,获得积分10
3秒前
爱学习的GGbond完成签到,获得积分10
3秒前
Survivor应助to高坚果采纳,获得10
3秒前
椿iii发布了新的文献求助10
3秒前
樊尔风完成签到,获得积分10
3秒前
赘婿应助丽优采纳,获得10
3秒前
薄荷心完成签到 ,获得积分10
3秒前
yonglong完成签到,获得积分10
4秒前
CyrusSo524发布了新的文献求助200
4秒前
哇哈哈发布了新的文献求助10
5秒前
whitezhu完成签到,获得积分10
5秒前
JFP发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
冷酷严青发布了新的文献求助10
6秒前
7秒前
三号技师完成签到,获得积分10
8秒前
对对对完成签到,获得积分10
8秒前
苏黎世发布了新的文献求助10
8秒前
Lin发布了新的文献求助10
9秒前
善学以致用应助12334采纳,获得10
9秒前
明明发布了新的文献求助10
10秒前
ddog完成签到,获得积分10
10秒前
惠慧完成签到,获得积分10
10秒前
伍六七完成签到 ,获得积分10
10秒前
弓长完成签到,获得积分10
10秒前
11秒前
wuanqi12完成签到,获得积分20
12秒前
甘蔗侠发布了新的文献求助10
12秒前
缓慢易云发布了新的文献求助10
13秒前
CipherSage应助强健的冰棍采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582