Distinguishing Tumor Cell Infiltration and Vasogenic Edema in the Peritumoral Region of Glioblastoma at the Voxel Level via Conventional MRI Sequences

体素 渗透(HVAC) 医学 病理 水肿 活检 胶质母细胞瘤 磁共振弥散成像 核医学 磁共振成像 放射科 内科学 物理 癌症研究 热力学
作者
Lei He,Hong Zhang,Tianshi Li,Jianing Yang,Yanpeng Zhou,Jiaxiang Wang,Tuerhong Saidaer,Xing Liu,Lei Wang,Yinyan Wang
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (3): 1082-1090 被引量:3
标识
DOI:10.1016/j.acra.2023.08.008
摘要

The peritumoral region of glioblastoma (GBM) is composed of infiltrating tumor cells and vasogenic edema, which are difficult to distinguish manually on MRI. To distinguish tumor cell infiltration and vasogenic edema in GBM peritumoral regions, it is crucial to develop a method that is precise, effective, and widely applicable.We retrieved the image characteristics of 379,730 voxels (marker of tumor infiltration) from 28 non-enhanced gliomas and 365,262 voxels (marker of edema) from the peritumoral edema region of 14 meningiomas on conventional MRI sequences (T1-weighted image, the contrast-enhancing T1-weighted image, the T2-weighted image, the T2-fluid attenuated inversion recovery image, and the apparent diffusion coefficient map). Using the SVM classifier, a model for predicting tumor cell infiltration and vasogenic edema at the voxel level was developed. The accuracy of the model's predictions was then evaluated using 15 GBM patients who underwent stereotactic biopsies.The area under the curve (AUC), accuracy, sensitivity, and specificity of the prediction model were 0.93, 0.84, 0.83, and 0.85 in the training set, and 0.90, 0.82, 0.83, and 0.83 in the test set (704,992 voxels), respectively. The pathology verification of 28 biopsy points with an accuracy of 0.79.At the voxel level, it seems possible to forecast tumor cell infiltration and vasogenic edema in the peritumoral region of GBM based on conventional MRI sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑开司09发布了新的文献求助10
刚刚
minmin完成签到,获得积分10
刚刚
乐乐应助科研通管家采纳,获得10
1秒前
雪白问兰应助科研通管家采纳,获得50
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
难过的翎应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
Hungrylunch应助科研通管家采纳,获得20
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
prosperp应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
Tong完成签到,获得积分0
2秒前
Cassie应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
撒啊完成签到,获得积分10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
小王不会看文献完成签到,获得积分10
4秒前
4秒前
2以李完成签到,获得积分10
4秒前
5秒前
5秒前
倩倩完成签到 ,获得积分10
6秒前
6秒前
贝利亚完成签到,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672