Distinguishing Tumor Cell Infiltration and Vasogenic Edema in the Peritumoral Region of Glioblastoma at the Voxel Level via Conventional MRI Sequences

体素 渗透(HVAC) 医学 病理 水肿 活检 胶质母细胞瘤 磁共振弥散成像 核医学 磁共振成像 放射科 内科学 物理 癌症研究 热力学
作者
Lei He,Hong Zhang,Tianshi Li,Jianing Yang,Yanpeng Zhou,Jiaxiang Wang,Tuerhong Saidaer,Xing Liu,Lei Wang,Yinyan Wang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (3): 1082-1090 被引量:6
标识
DOI:10.1016/j.acra.2023.08.008
摘要

The peritumoral region of glioblastoma (GBM) is composed of infiltrating tumor cells and vasogenic edema, which are difficult to distinguish manually on MRI. To distinguish tumor cell infiltration and vasogenic edema in GBM peritumoral regions, it is crucial to develop a method that is precise, effective, and widely applicable.We retrieved the image characteristics of 379,730 voxels (marker of tumor infiltration) from 28 non-enhanced gliomas and 365,262 voxels (marker of edema) from the peritumoral edema region of 14 meningiomas on conventional MRI sequences (T1-weighted image, the contrast-enhancing T1-weighted image, the T2-weighted image, the T2-fluid attenuated inversion recovery image, and the apparent diffusion coefficient map). Using the SVM classifier, a model for predicting tumor cell infiltration and vasogenic edema at the voxel level was developed. The accuracy of the model's predictions was then evaluated using 15 GBM patients who underwent stereotactic biopsies.The area under the curve (AUC), accuracy, sensitivity, and specificity of the prediction model were 0.93, 0.84, 0.83, and 0.85 in the training set, and 0.90, 0.82, 0.83, and 0.83 in the test set (704,992 voxels), respectively. The pathology verification of 28 biopsy points with an accuracy of 0.79.At the voxel level, it seems possible to forecast tumor cell infiltration and vasogenic edema in the peritumoral region of GBM based on conventional MRI sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
红箭烟雨完成签到,获得积分10
2秒前
Ava应助怕孤单的幻枫采纳,获得10
4秒前
TaooSHuu发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
香蕉觅云应助神海采纳,获得10
9秒前
lalala发布了新的文献求助10
12秒前
坩埚钳完成签到,获得积分10
12秒前
所所应助包容的以彤采纳,获得10
14秒前
15秒前
16秒前
17秒前
所所应助博弈春秋采纳,获得10
17秒前
今后应助樱桃小王子采纳,获得10
17秒前
oh应助樱桃小王子采纳,获得10
17秒前
鸣笛应助樱桃小王子采纳,获得10
17秒前
zhangyu应助TaooSHuu采纳,获得10
17秒前
鸣笛应助樱桃小王子采纳,获得10
17秒前
鸣笛应助樱桃小王子采纳,获得10
17秒前
鸣笛应助樱桃小王子采纳,获得30
18秒前
鸣笛应助樱桃小王子采纳,获得10
18秒前
鸣笛应助樱桃小王子采纳,获得10
18秒前
18秒前
鸣笛应助樱桃小王子采纳,获得10
18秒前
鸣笛应助樱桃小王子采纳,获得10
18秒前
20秒前
苹果冬莲完成签到,获得积分10
20秒前
20秒前
风清扬发布了新的文献求助10
21秒前
21秒前
不倒翁完成签到,获得积分10
21秒前
kingwill应助科研通管家采纳,获得20
22秒前
田様应助科研通管家采纳,获得10
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
DijiaXu应助科研通管家采纳,获得10
22秒前
糖豆子完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014