亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combining vegetation, color, and texture indices with hyperspectral parameters using machine-learning methods to estimate nitrogen concentration in rice stems and leaves

高光谱成像 氮气 植被(病理学) 作物 环境科学 数学 水田 土壤质地 农学 人工智能 土壤科学 计算机科学 化学 土壤水分 生物 医学 有机化学 病理
作者
Dunliang Wang,Rui Li,Tao Liu,Shengping Liu,Chengming Sun,Wenshan Guo
出处
期刊:Field Crops Research [Elsevier]
卷期号:304: 109175-109175 被引量:32
标识
DOI:10.1016/j.fcr.2023.109175
摘要

Nitrogen is one of the important elements of crops, which plays a decisive role in crop growth and development and the formation of yields. Monitoring of rice organ-scale nitrogen concentration based on the unmanned aerial vehicle (UAV) images is of great significance for rice field management and yield prediction. Previous studies have focused on the use of traditional statistical methods and chlorophyll-related vegetation indices to construct plant nitrogen concentration, with models lacking generalizability. In this study, rice field trials of two varieties (NJ9108, YD6) and nitrogen fertilizer treatments (N0-N3: 0, 105, 210 and 315 kg/ha) were conducted for 3 years with manual sampling and UAV digital and hyperspectral images during key fertility periods. Based on the data of the whole growth periods and combined with vegetation indices (VIs), color indices (CIs), hyperspectral parameters (HPs), texture indices (TIs) and machine-learning algorithms, monitoring models of nitrogen concentration at the organ scale of rice were constructed and used to estimate the N content of multiple organs (leaf and stem) of rice at different periods. Field experiments were used to collect the multi-organ nitrogen concentration of rice and the remote sensing (RS) data of UAV during the critical growth period of the two years (2021, 2022), and machine-learning algorithms were used to construct the estimation models. The results showed that VIs had good correlations with leaf nitrogen concentration (LNC), stem nitrogen concentration (SNC) and plant nitrogen concentration (PNC), with correlation coefficients (r) of 0.86, 0.74 and 0.81, respectively. Machine learning estimation models combining multiple types of RS indices were more accurate than single parameter models constructed by traditional statistical methods, with the LNC optimal model (R2 = 0.8, RMSE = 3.83 mg/g), the SNC optimal model (R2 = 0.7, RMSE = 2.43 mg/g) and the PNC optimal model (R2 = 0.7, RMSE = 3.19 mg/g). Validated using data from 2020, the machine-learning models were far more accurate than traditional methods. These results show that the use of multi-source remote sensing data based on machine-learning algorithms can effectively estimate the nitrogen concentration of organs in rice. This study provides an accurate, stable and universal method for estimating rice nitrogen concentration in rice organs, which can be used as a reference for estimating rice nitrogen concentration in large fields using UAV RS technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助jy采纳,获得10
刚刚
5秒前
深情的楷瑞完成签到 ,获得积分10
6秒前
jingutaimi完成签到,获得积分10
7秒前
Omni完成签到,获得积分10
9秒前
彭于晏应助MgZn采纳,获得10
10秒前
英姑应助深情的楷瑞采纳,获得10
10秒前
科研通AI6应助yxf采纳,获得10
13秒前
14秒前
19秒前
23秒前
30秒前
charih完成签到 ,获得积分10
32秒前
浮游应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得10
33秒前
英俊的铭应助科研通管家采纳,获得10
33秒前
赘婿应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得10
33秒前
43秒前
在逃板砖完成签到 ,获得积分10
49秒前
guo关闭了guo文献求助
52秒前
56秒前
啊鹏鹏发布了新的文献求助10
1分钟前
CATH完成签到 ,获得积分10
1分钟前
稳重的白筠完成签到 ,获得积分10
1分钟前
1分钟前
clovers发布了新的文献求助10
1分钟前
1分钟前
顾矜应助学医梅西采纳,获得10
1分钟前
1分钟前
正直焦发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
LIN完成签到,获得积分10
1分钟前
学医梅西发布了新的文献求助10
1分钟前
willlee完成签到 ,获得积分10
1分钟前
山野的雾完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509353
求助须知:如何正确求助?哪些是违规求助? 4604314
关于积分的说明 14489571
捐赠科研通 4539026
什么是DOI,文献DOI怎么找? 2487276
邀请新用户注册赠送积分活动 1469709
关于科研通互助平台的介绍 1441934