Combining vegetation, color, and texture indices with hyperspectral parameters using machine-learning methods to estimate nitrogen concentration in rice stems and leaves

高光谱成像 氮气 植被(病理学) 作物 环境科学 数学 水田 土壤质地 农学 人工智能 土壤科学 计算机科学 化学 土壤水分 生物 病理 医学 有机化学
作者
Dunliang Wang,Rui Li,Tao Liu,Shengping Liu,Chengming Sun,Wenshan Guo
出处
期刊:Field Crops Research [Elsevier]
卷期号:304: 109175-109175 被引量:32
标识
DOI:10.1016/j.fcr.2023.109175
摘要

Nitrogen is one of the important elements of crops, which plays a decisive role in crop growth and development and the formation of yields. Monitoring of rice organ-scale nitrogen concentration based on the unmanned aerial vehicle (UAV) images is of great significance for rice field management and yield prediction. Previous studies have focused on the use of traditional statistical methods and chlorophyll-related vegetation indices to construct plant nitrogen concentration, with models lacking generalizability. In this study, rice field trials of two varieties (NJ9108, YD6) and nitrogen fertilizer treatments (N0-N3: 0, 105, 210 and 315 kg/ha) were conducted for 3 years with manual sampling and UAV digital and hyperspectral images during key fertility periods. Based on the data of the whole growth periods and combined with vegetation indices (VIs), color indices (CIs), hyperspectral parameters (HPs), texture indices (TIs) and machine-learning algorithms, monitoring models of nitrogen concentration at the organ scale of rice were constructed and used to estimate the N content of multiple organs (leaf and stem) of rice at different periods. Field experiments were used to collect the multi-organ nitrogen concentration of rice and the remote sensing (RS) data of UAV during the critical growth period of the two years (2021, 2022), and machine-learning algorithms were used to construct the estimation models. The results showed that VIs had good correlations with leaf nitrogen concentration (LNC), stem nitrogen concentration (SNC) and plant nitrogen concentration (PNC), with correlation coefficients (r) of 0.86, 0.74 and 0.81, respectively. Machine learning estimation models combining multiple types of RS indices were more accurate than single parameter models constructed by traditional statistical methods, with the LNC optimal model (R2 = 0.8, RMSE = 3.83 mg/g), the SNC optimal model (R2 = 0.7, RMSE = 2.43 mg/g) and the PNC optimal model (R2 = 0.7, RMSE = 3.19 mg/g). Validated using data from 2020, the machine-learning models were far more accurate than traditional methods. These results show that the use of multi-source remote sensing data based on machine-learning algorithms can effectively estimate the nitrogen concentration of organs in rice. This study provides an accurate, stable and universal method for estimating rice nitrogen concentration in rice organs, which can be used as a reference for estimating rice nitrogen concentration in large fields using UAV RS technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱吃狗答辩完成签到,获得积分20
刚刚
zychaos发布了新的文献求助10
刚刚
刘林美完成签到 ,获得积分10
刚刚
AJIN完成签到,获得积分20
1秒前
Atlantis完成签到,获得积分10
1秒前
1秒前
1秒前
叶远望发布了新的文献求助10
2秒前
原鑫完成签到,获得积分10
2秒前
吧啦啦啦啦啦完成签到,获得积分10
2秒前
桐桐应助xcont采纳,获得10
2秒前
浮游应助苹果采纳,获得10
2秒前
马马发布了新的文献求助10
2秒前
星辰大海应助拼搏的夏槐采纳,获得10
2秒前
3秒前
3秒前
3秒前
cyanpomelo完成签到,获得积分10
3秒前
4秒前
paltte发布了新的文献求助10
4秒前
烟花应助秀儿采纳,获得10
4秒前
4秒前
Jim完成签到,获得积分20
4秒前
生姜完成签到,获得积分10
5秒前
情怀应助坦率的友容采纳,获得10
5秒前
5秒前
隐形的谷南完成签到,获得积分10
5秒前
5秒前
kouyu发布了新的文献求助10
6秒前
44dfc完成签到,获得积分10
6秒前
洪芃欢发布了新的文献求助10
6秒前
6秒前
万能图书馆应助合适一斩采纳,获得10
7秒前
7秒前
李nb完成签到,获得积分10
7秒前
田様应助爱吃狗答辩采纳,获得10
7秒前
科目三应助AJIN采纳,获得10
8秒前
123发布了新的文献求助10
8秒前
左耳东完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286035
求助须知:如何正确求助?哪些是违规求助? 4438924
关于积分的说明 13819501
捐赠科研通 4320540
什么是DOI,文献DOI怎么找? 2371517
邀请新用户注册赠送积分活动 1367063
关于科研通互助平台的介绍 1330462