Combining vegetation, color, and texture indices with hyperspectral parameters using machine-learning methods to estimate nitrogen concentration in rice stems and leaves

高光谱成像 氮气 植被(病理学) 作物 环境科学 数学 水田 土壤质地 农学 人工智能 土壤科学 计算机科学 化学 土壤水分 生物 医学 有机化学 病理
作者
Dunliang Wang,Rui Li,Tao Liu,Shengping Liu,Chengming Sun,Wenshan Guo
出处
期刊:Field Crops Research [Elsevier BV]
卷期号:304: 109175-109175 被引量:10
标识
DOI:10.1016/j.fcr.2023.109175
摘要

Nitrogen is one of the important elements of crops, which plays a decisive role in crop growth and development and the formation of yields. Monitoring of rice organ-scale nitrogen concentration based on the unmanned aerial vehicle (UAV) images is of great significance for rice field management and yield prediction. Previous studies have focused on the use of traditional statistical methods and chlorophyll-related vegetation indices to construct plant nitrogen concentration, with models lacking generalizability. In this study, rice field trials of two varieties (NJ9108, YD6) and nitrogen fertilizer treatments (N0-N3: 0, 105, 210 and 315 kg/ha) were conducted for 3 years with manual sampling and UAV digital and hyperspectral images during key fertility periods. Based on the data of the whole growth periods and combined with vegetation indices (VIs), color indices (CIs), hyperspectral parameters (HPs), texture indices (TIs) and machine-learning algorithms, monitoring models of nitrogen concentration at the organ scale of rice were constructed and used to estimate the N content of multiple organs (leaf and stem) of rice at different periods. Field experiments were used to collect the multi-organ nitrogen concentration of rice and the remote sensing (RS) data of UAV during the critical growth period of the two years (2021, 2022), and machine-learning algorithms were used to construct the estimation models. The results showed that VIs had good correlations with leaf nitrogen concentration (LNC), stem nitrogen concentration (SNC) and plant nitrogen concentration (PNC), with correlation coefficients (r) of 0.86, 0.74 and 0.81, respectively. Machine learning estimation models combining multiple types of RS indices were more accurate than single parameter models constructed by traditional statistical methods, with the LNC optimal model (R2 = 0.8, RMSE = 3.83 mg/g), the SNC optimal model (R2 = 0.7, RMSE = 2.43 mg/g) and the PNC optimal model (R2 = 0.7, RMSE = 3.19 mg/g). Validated using data from 2020, the machine-learning models were far more accurate than traditional methods. These results show that the use of multi-source remote sensing data based on machine-learning algorithms can effectively estimate the nitrogen concentration of organs in rice. This study provides an accurate, stable and universal method for estimating rice nitrogen concentration in rice organs, which can be used as a reference for estimating rice nitrogen concentration in large fields using UAV RS technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨扬完成签到,获得积分10
刚刚
应天亦发布了新的文献求助10
刚刚
爆米花应助Helly采纳,获得10
刚刚
鱼乐乐发布了新的文献求助10
1秒前
自由若剑发布了新的文献求助10
1秒前
wanci应助笑点低的不采纳,获得10
1秒前
aladi1011完成签到,获得积分10
1秒前
1秒前
烟酒生应助这个真不懂采纳,获得10
2秒前
ranran发布了新的文献求助10
2秒前
3秒前
peace完成签到,获得积分10
4秒前
田...完成签到,获得积分10
4秒前
4秒前
沄霄之上发布了新的文献求助10
4秒前
MIDANN发布了新的文献求助10
4秒前
4秒前
飘逸鸵鸟完成签到,获得积分10
5秒前
xiawanren00完成签到,获得积分10
5秒前
5秒前
6秒前
大秦帝国完成签到,获得积分10
6秒前
夏轩FromHard完成签到,获得积分10
6秒前
yn发布了新的文献求助10
6秒前
William完成签到 ,获得积分10
7秒前
7秒前
happiness完成签到 ,获得积分10
7秒前
谨慎纸飞机完成签到,获得积分10
7秒前
yao完成签到,获得积分10
7秒前
8秒前
8秒前
SciGPT应助ranran采纳,获得10
8秒前
歡禧完成签到,获得积分10
9秒前
9秒前
科研小迷糊完成签到,获得积分10
9秒前
十六发布了新的文献求助10
9秒前
小甑发布了新的文献求助10
10秒前
大个应助半疯半癫采纳,获得30
10秒前
CodeCraft应助应天亦采纳,获得30
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582