Risk stratification of papillary thyroid cancers using multidimensional machine learning

医学 回顾性队列研究 前瞻性队列研究 内科学 肿瘤科 甲状腺癌 队列 甲状腺
作者
Yuanhui Li,Fan Wu,Weigang Ge,Yu Zhang,Y. Hu,Lingqian Zhao,Wanglong Gou,Jingjing Shi,Yeqin Ni,Lu Li,Wenxin Fu,Xiangfeng Lin,Yunxian Yu,Zhijiang Han,Chuang-Hua Chen,Rujun Xu,Shirong Zhang,Li Zhou,Gang Pan,You Peng,Linlin Mao,Tianhan Zhou,Ju‐Sheng Zheng,Haitao Zheng,Yaoting Sun,Tiannan Guo,Dingcun Luo
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:110 (1): 372-384 被引量:3
标识
DOI:10.1097/js9.0000000000000814
摘要

Background: Papillary thyroid cancer (PTC) is one of the most common endocrine malignancies with different risk levels. However, preoperative risk assessment of PTC is still a challenge in the worldwide. Here, the authors first report a Preoperative Risk Assessment Classifier for PTC (PRAC-PTC) by multidimensional features including clinical indicators, immune indices, genetic feature, and proteomics. Materials and Methods: The 558 patients collected from June 2013 to November 2020 were allocated to three groups: the discovery set [274 patients, 274 formalin-fixed paraffin-embedded (FFPE)], the retrospective test set (166 patients, 166 FFPE), and the prospective test set (118 patients, 118 fine-needle aspiration). Proteomic profiling was conducted by FFPE and fine-needle aspiration tissues from the patients. Preoperative clinical information and blood immunological indices were collected. The BRAF V600E mutation were detected by the amplification refractory mutation system. Results: The authors developed a machine learning model of 17 variables based on the multidimensional features of 274 PTC patients from a retrospective cohort. The PRAC-PTC achieved areas under the curve (AUC) of 0.925 in the discovery set and was validated externally by blinded analyses in a retrospective cohort of 166 PTC patients (0.787 AUC) and a prospective cohort of 118 PTC patients (0.799 AUC) from two independent clinical centres. Meanwhile, the preoperative predictive risk effectiveness of clinicians was improved with the assistance of PRAC-PTC, and the accuracies reached at 84.4% (95% CI: 82.9–84.4) and 83.5% (95% CI: 82.2–84.2) in the retrospective and prospective test sets, respectively. Conclusion: This study demonstrated that the PRAC-PTC that integrating clinical data, gene mutation information, immune indices, high-throughput proteomics and machine learning technology in multicentre retrospective and prospective clinical cohorts can effectively stratify the preoperative risk of PTC and may decrease unnecessary surgery or overtreatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助arielice采纳,获得10
1秒前
刻苦慕晴完成签到 ,获得积分10
2秒前
红红完成签到,获得积分10
3秒前
辛勤的无血完成签到,获得积分10
3秒前
闾丘曼安完成签到,获得积分10
4秒前
香菜完成签到,获得积分10
4秒前
4秒前
ccccccwq发布了新的文献求助10
4秒前
顾矜应助dff采纳,获得10
4秒前
Zoe完成签到,获得积分10
5秒前
cj完成签到,获得积分10
5秒前
顺利的绿柏完成签到,获得积分10
7秒前
乐园鸟完成签到,获得积分10
7秒前
deer完成签到,获得积分10
7秒前
9秒前
白鹭立雪完成签到,获得积分10
9秒前
酷波er应助一个小胖子采纳,获得10
9秒前
大力的落雁完成签到,获得积分10
9秒前
9秒前
10秒前
宋祝福发布了新的文献求助20
10秒前
善学以致用应助wangtao采纳,获得10
10秒前
lala发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
orixero应助精明芷巧采纳,获得10
14秒前
tanchihao完成签到,获得积分10
14秒前
十六日呀完成签到 ,获得积分10
14秒前
nanjizi发布了新的文献求助30
15秒前
Eason215xB发布了新的文献求助10
15秒前
NexusExplorer应助doctorsu采纳,获得10
15秒前
vampirell完成签到,获得积分0
15秒前
火星上的沛春完成签到,获得积分10
16秒前
落寞万言发布了新的文献求助10
17秒前
午见千山应助thinking采纳,获得10
17秒前
方远锋完成签到,获得积分10
17秒前
能干水蓝完成签到 ,获得积分10
18秒前
不吃香菜完成签到,获得积分10
18秒前
li完成签到,获得积分10
19秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072891
求助须知:如何正确求助?哪些是违规求助? 2726503
关于积分的说明 7495286
捐赠科研通 2374552
什么是DOI,文献DOI怎么找? 1259054
科研通“疑难数据库(出版商)”最低求助积分说明 610527
版权声明 597020