亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Risk stratification of papillary thyroid cancers using multidimensional machine learning

医学 回顾性队列研究 前瞻性队列研究 内科学 肿瘤科 甲状腺癌 队列 甲状腺
作者
Yuanhui Li,Fan Wu,Weigang Ge,Yu Zhang,Y. Hu,Lingqian Zhao,Wanglong Gou,Jingjing Shi,Yeqin Ni,Lu Li,Wenxin Fu,Xiangfeng Lin,Yunxian Yu,Zhijiang Han,Chuang-Hua Chen,Rujun Xu,Shirong Zhang,Li Zhou,Gang Pan,You Peng,Linlin Mao,Tianhan Zhou,Ju‐Sheng Zheng,Haitao Zheng,Yaoting Sun,Tiannan Guo,Dingcun Luo
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:110 (1): 372-384 被引量:3
标识
DOI:10.1097/js9.0000000000000814
摘要

Background: Papillary thyroid cancer (PTC) is one of the most common endocrine malignancies with different risk levels. However, preoperative risk assessment of PTC is still a challenge in the worldwide. Here, the authors first report a Preoperative Risk Assessment Classifier for PTC (PRAC-PTC) by multidimensional features including clinical indicators, immune indices, genetic feature, and proteomics. Materials and Methods: The 558 patients collected from June 2013 to November 2020 were allocated to three groups: the discovery set [274 patients, 274 formalin-fixed paraffin-embedded (FFPE)], the retrospective test set (166 patients, 166 FFPE), and the prospective test set (118 patients, 118 fine-needle aspiration). Proteomic profiling was conducted by FFPE and fine-needle aspiration tissues from the patients. Preoperative clinical information and blood immunological indices were collected. The BRAF V600E mutation were detected by the amplification refractory mutation system. Results: The authors developed a machine learning model of 17 variables based on the multidimensional features of 274 PTC patients from a retrospective cohort. The PRAC-PTC achieved areas under the curve (AUC) of 0.925 in the discovery set and was validated externally by blinded analyses in a retrospective cohort of 166 PTC patients (0.787 AUC) and a prospective cohort of 118 PTC patients (0.799 AUC) from two independent clinical centres. Meanwhile, the preoperative predictive risk effectiveness of clinicians was improved with the assistance of PRAC-PTC, and the accuracies reached at 84.4% (95% CI: 82.9–84.4) and 83.5% (95% CI: 82.2–84.2) in the retrospective and prospective test sets, respectively. Conclusion: This study demonstrated that the PRAC-PTC that integrating clinical data, gene mutation information, immune indices, high-throughput proteomics and machine learning technology in multicentre retrospective and prospective clinical cohorts can effectively stratify the preoperative risk of PTC and may decrease unnecessary surgery or overtreatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
49秒前
49秒前
49秒前
1分钟前
樊伟诚发布了新的文献求助10
1分钟前
科研通AI5应助闾丘惜萱采纳,获得30
2分钟前
陈无敌完成签到 ,获得积分10
2分钟前
2分钟前
闾丘惜萱完成签到,获得积分10
2分钟前
闾丘惜萱发布了新的文献求助30
2分钟前
2分钟前
锡伍闻钟发布了新的文献求助10
2分钟前
2分钟前
2分钟前
瘦瘦乌龟完成签到 ,获得积分10
2分钟前
万能图书馆应助Seeking采纳,获得10
4分钟前
4分钟前
4分钟前
GIA发布了新的文献求助10
5分钟前
fev123完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
Perry完成签到,获得积分10
7分钟前
哭泣灯泡完成签到,获得积分10
7分钟前
爆米花应助司徒易采纳,获得10
7分钟前
7分钟前
司徒易完成签到,获得积分10
7分钟前
司徒易发布了新的文献求助10
7分钟前
悦耳的亦旋完成签到,获得积分10
7分钟前
方宇应助懵懂的小懒虫采纳,获得10
8分钟前
方宇应助竹子采纳,获得30
8分钟前
8分钟前
8分钟前
8分钟前
卡恩完成签到 ,获得积分10
9分钟前
9分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Questioning in the Primary School 500
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
频率源分析与设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3686751
求助须知:如何正确求助?哪些是违规求助? 3237074
关于积分的说明 9829449
捐赠科研通 2949040
什么是DOI,文献DOI怎么找? 1617190
邀请新用户注册赠送积分活动 764126
科研通“疑难数据库(出版商)”最低求助积分说明 738322