Molecular Engineering of Highly Fluorinated Carbon Dots: Tailoring Li+ Dynamics and Interfacial Fluorination for Stable Solid Lithium Batteries

电解质 材料科学 结晶度 聚合物 化学工程 电池(电) 纳米技术 锂(药物) 电极 化学 复合材料 物理化学 医学 功率(物理) 物理 量子力学 工程类 冶金 内分泌学
作者
Laiqiang Xu,Shuo Li,Hanyu Tu,Fangjun Zhu,Huaxin Liu,Wentao Deng,Jinbo Hu,Guoqiang Zou,Hongshuai Hou,Xiaobo Ji
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (21): 22082-22094 被引量:31
标识
DOI:10.1021/acsnano.3c08935
摘要

Fluorinated carbon dots (FCDs) have garnered interest owing to their distinct physicochemical properties. Nevertheless, intricate synthesis procedures and quite low fluorine doping levels limit its development and application. Herein, we propose a facile approach based on the Claisen–Schmidt reaction to realize gram-scale synthesis of highly fluorinated carbon dots (up to 20.79 at. %) at room temperature and atmospheric pressure, and a comprehensive exploration of the specific reaction mechanism is conducted. Furthermore, in consideration of the high fluorine content, good dispersibility, and compatibility with polymer electrolyte, the synthesized FCDs are utilized as an additive for PEO-based solid electrolytes of a Li battery to improve its ionic conductivity, interface stability, and mechanical properties. The introduction of FCDs can not only reduce the crystallinity of PEO and enhance the interaction of polymer chains, but also facilitate the establishment of uninterrupted pathways and in situ fluorination at the interface, which is substantiated by both theoretical calculations and experimental findings. As a result, the lithium symmetrical battery can operate stably for 1000 h at a current density of 0.4 mA cm–2. Simultaneously, the LiFePO4/Li battery utilizing the composite electrolyte exhibits a capacity of 130.3 mAh g–1 over 300 cycles while maintaining a capacity retention rate of 95.10%. This study develops a strategy for synthesizing highly fluorinated carbon dots, which demonstrate a useful influence on PEO electrolytes, thus boosting the advancement of FCDs and solid-state batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23lk发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
tomato发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
蓝胖子发布了新的文献求助10
6秒前
6秒前
7秒前
yb完成签到,获得积分20
7秒前
7秒前
SCC完成签到,获得积分10
7秒前
7秒前
2123完成签到,获得积分10
8秒前
yj91发布了新的文献求助10
8秒前
追寻紫安应助23lk采纳,获得10
8秒前
乐乐应助小清新采纳,获得10
8秒前
文献通完成签到 ,获得积分10
8秒前
8秒前
9秒前
王超超发布了新的文献求助10
9秒前
9秒前
rnf完成签到,获得积分10
10秒前
蔡秋景完成签到,获得积分20
10秒前
风评发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
shijiaomu完成签到,获得积分10
11秒前
11秒前
12秒前
魏伯安发布了新的文献求助10
12秒前
Rainy发布了新的文献求助10
12秒前
英俊的铭应助油菜的星星采纳,获得10
12秒前
NIUB完成签到,获得积分10
13秒前
蔡秋景发布了新的文献求助10
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488034
求助须知:如何正确求助?哪些是违规求助? 3075861
关于积分的说明 9142479
捐赠科研通 2768110
什么是DOI,文献DOI怎么找? 1518966
邀请新用户注册赠送积分活动 703449
科研通“疑难数据库(出版商)”最低求助积分说明 701864