亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-level Subgraph Representation Learning for Drug-Disease Association Prediction Over Heterogeneous Biological Information Network

计算机科学 代表(政治) 水准点(测量) 图形 机器学习 人工智能 联想(心理学) 药物重新定位 特征学习 构造(python库) 过程(计算) 药品 理论计算机科学 心理学 哲学 大地测量学 认识论 精神科 政治 政治学 法学 程序设计语言 地理 操作系统
作者
Bo-Wei Zhao,Xiaorui Su,Yue Yang,Dongxu Li,Pengwei Hu,Zhu‐Hong You,Lun Hu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 156-167
标识
DOI:10.1007/978-981-99-4749-2_14
摘要

Identifying new indications for existing drugs is a crucial role in drug research and development. Computational-based methods are normally regarded as an effective way to infer drugs with new indications. They, though effective, normally fall short of capturing semantic higher-order connectivity patterns presented in heterogeneous biological information networks (HBINs) when learning the respective embeddings of drugs and diseases. To overcome this problem, we propose a novel Multi-level Subgraph Representation Learning model, namely MSRLDDA, for drug-disease association (DDA) prediction. In particular, MSRLDDA first defines different meta-paths to construct semantic subgraphs such that the mechanisms of how drugs act on diseases can be revealed. For each subgraph, a particular graph neural network model is adopted to conduct the representation learning process from different perspectives. By doing so, more expressive representations of drugs and diseases are obtained at multi-level. Experimental results on two benchmark datasets demonstrate that MSRLDDA performs better than several state-of-the-art drug repositioning models. This is a strong indicator that the consideration of higher-order connectivity patterns gains new insight into DDA prediction with improved accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
最落幕完成签到 ,获得积分10
2秒前
10秒前
贺俊龙发布了新的文献求助30
15秒前
研友_VZG7GZ应助贺俊龙采纳,获得10
22秒前
Cherry发布了新的文献求助10
40秒前
Cherry完成签到,获得积分10
54秒前
大个应助科研通管家采纳,获得10
1分钟前
2分钟前
Lulu完成签到,获得积分10
2分钟前
journey完成签到 ,获得积分10
3分钟前
玛琳卡迪马完成签到,获得积分10
3分钟前
ysy完成签到,获得积分10
4分钟前
4分钟前
似乎一场梦完成签到 ,获得积分10
4分钟前
科研通AI5应助andrele采纳,获得10
4分钟前
小王发布了新的文献求助10
4分钟前
starry发布了新的文献求助10
4分钟前
Joanna完成签到,获得积分10
4分钟前
万能图书馆应助小王采纳,获得10
4分钟前
隐形曼青应助starry采纳,获得10
5分钟前
CipherSage应助科研通管家采纳,获得200
5分钟前
5分钟前
贺俊龙完成签到,获得积分10
5分钟前
贺俊龙发布了新的文献求助10
5分钟前
淡然绝山完成签到,获得积分10
6分钟前
山野完成签到 ,获得积分10
6分钟前
xupt唐僧完成签到,获得积分10
6分钟前
斯文败类应助淡然绝山采纳,获得10
7分钟前
花花糖果完成签到 ,获得积分10
7分钟前
大模型应助科研通管家采纳,获得10
7分钟前
胖小羊完成签到 ,获得积分10
7分钟前
7分钟前
秋日思语发布了新的文献求助10
7分钟前
micheal小牛关注了科研通微信公众号
7分钟前
micheal小牛发布了新的文献求助10
8分钟前
鳄鱼不做饿梦完成签到,获得积分10
8分钟前
Ashao完成签到 ,获得积分10
9分钟前
宋宋要成功完成签到 ,获得积分10
9分钟前
micheal小牛完成签到,获得积分10
10分钟前
zm完成签到 ,获得积分10
10分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210943
求助须知:如何正确求助?哪些是违规求助? 4387557
关于积分的说明 13662973
捐赠科研通 4247533
什么是DOI,文献DOI怎么找? 2330349
邀请新用户注册赠送积分活动 1328118
关于科研通互助平台的介绍 1280881