亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-level Subgraph Representation Learning for Drug-Disease Association Prediction Over Heterogeneous Biological Information Network

计算机科学 代表(政治) 水准点(测量) 图形 机器学习 人工智能 联想(心理学) 药物重新定位 特征学习 构造(python库) 过程(计算) 药品 理论计算机科学 操作系统 精神科 认识论 哲学 政治 政治学 程序设计语言 法学 地理 心理学 大地测量学
作者
Bo-Wei Zhao,Xiaorui Su,Yue Yang,Dongxu Li,Pengwei Hu,Zhu‐Hong You,Lun Hu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 156-167
标识
DOI:10.1007/978-981-99-4749-2_14
摘要

Identifying new indications for existing drugs is a crucial role in drug research and development. Computational-based methods are normally regarded as an effective way to infer drugs with new indications. They, though effective, normally fall short of capturing semantic higher-order connectivity patterns presented in heterogeneous biological information networks (HBINs) when learning the respective embeddings of drugs and diseases. To overcome this problem, we propose a novel Multi-level Subgraph Representation Learning model, namely MSRLDDA, for drug-disease association (DDA) prediction. In particular, MSRLDDA first defines different meta-paths to construct semantic subgraphs such that the mechanisms of how drugs act on diseases can be revealed. For each subgraph, a particular graph neural network model is adopted to conduct the representation learning process from different perspectives. By doing so, more expressive representations of drugs and diseases are obtained at multi-level. Experimental results on two benchmark datasets demonstrate that MSRLDDA performs better than several state-of-the-art drug repositioning models. This is a strong indicator that the consideration of higher-order connectivity patterns gains new insight into DDA prediction with improved accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑白完成签到 ,获得积分10
38秒前
57秒前
Qian完成签到 ,获得积分10
1分钟前
情怀应助Ying采纳,获得20
1分钟前
1分钟前
1分钟前
科研通AI5应助忧虑的安青采纳,获得10
1分钟前
juejue333完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Ying发布了新的文献求助20
2分钟前
2分钟前
Betty发布了新的文献求助10
2分钟前
Betty完成签到,获得积分10
2分钟前
科目三应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
笨笨完成签到,获得积分10
3分钟前
3分钟前
3分钟前
思源应助嘿嘿嘿侦探社采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
gyh发布了新的文献求助10
4分钟前
孤独的涵柳完成签到 ,获得积分10
4分钟前
4分钟前
gyh完成签到,获得积分20
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
Owen应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
搜集达人应助喜欢对你笑采纳,获得10
5分钟前
隐形曼青应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
老石完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513278
关于积分的说明 11167214
捐赠科研通 3248660
什么是DOI,文献DOI怎么找? 1794386
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804638