已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

High-strength, multifunctional and 3D printable mullite-based porous ceramics with a controllable shell-pore structure

材料科学 多孔性 莫来石 陶瓷 复合材料 微观结构 抗压强度 保温 壳体(结构) 图层(电子)
作者
Feiyue Yang,Shuang Zhao,Guobing Chen,Kunfeng Li,Zhifang Fei,Paul Mummery,Yang Zi-chun
出处
期刊:Advanced powder materials [Elsevier]
卷期号:3 (1): 100153-100153 被引量:16
标识
DOI:10.1016/j.apmate.2023.100153
摘要

The quest for lightweight and functional materials poses stringent requirements on mechanical performance of porous materials. However, the contradiction between high strength and elevated porosity of porous materials severely limits their application scenarios in emerging fields. Herein, high-strength multifunctional mullite-based porous ceramic monoliths were fabricated utilizing waste fly ash hollow microspheres (FAHMs) by the protein gelling technique. Owing to their unique shell-pore structure inspired by shell-protected biomaterials, the monoliths with porosity of 54.69%–70.02% exhibited a high compressive strength (32.3–42.9 MPa) which was 2–5 times that of mullite-based porous ceramics with similar density reported elsewhere. Moreover, their pore structure and properties could be tuned by regulation of the particle size and content of the FAHMs, and the resultant monoliths demonstrated superior integrated performances for multifunctional applications, such as broadband sound insulation, efficient thermal insulation, and high-temperature fire resistance (>1300 °C). On this basis, mullite-based porous ceramic lattices (porosity 68.28%–84.79%) with a hierarchical porous structure were successfully assembled by direct ink writing (DIW), which exhibited significantly higher compressive strength (3.02–10.77 MPa) than most other ceramic lattices with comparable densities. This unique shell-pore structure can be extended to other porous materials, and our strategy paves a new way for cost-effective, scalable and green production of multifunctional materials with well-defined microstructure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI40应助allzd采纳,获得10
1秒前
1秒前
sherrinford完成签到,获得积分10
1秒前
所所应助emeqwq采纳,获得10
2秒前
2秒前
多情易蓉发布了新的文献求助10
2秒前
所所应助穿花寻路采纳,获得10
3秒前
科研通AI2S应助林狗采纳,获得10
3秒前
呜呼发布了新的文献求助10
3秒前
3秒前
Fabio发布了新的文献求助10
3秒前
yl完成签到,获得积分10
4秒前
4秒前
4秒前
精明平露发布了新的文献求助10
5秒前
崔嘉坤完成签到,获得积分10
5秒前
haha完成签到 ,获得积分10
5秒前
5秒前
hehe完成签到,获得积分10
6秒前
7秒前
笑而不语完成签到 ,获得积分10
7秒前
7秒前
123发布了新的文献求助10
8秒前
kelsey完成签到 ,获得积分10
8秒前
Berberin发布了新的文献求助30
8秒前
chase发布了新的文献求助10
8秒前
Lynne发布了新的文献求助10
9秒前
xiaolu发布了新的文献求助10
9秒前
10秒前
10秒前
sky发布了新的文献求助10
11秒前
顾矜应助暴躁的白容采纳,获得10
11秒前
沉静沉鱼发布了新的文献求助10
13秒前
田様应助玩命的凝天采纳,获得10
13秒前
15秒前
Lee完成签到,获得积分10
15秒前
suyi完成签到,获得积分10
16秒前
科研通AI40应助盛乾衣采纳,获得10
17秒前
MingqingFang完成签到,获得积分10
18秒前
li完成签到 ,获得积分10
19秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471216
求助须知:如何正确求助?哪些是违规求助? 3064058
关于积分的说明 9087301
捐赠科研通 2754846
什么是DOI,文献DOI怎么找? 1511599
邀请新用户注册赠送积分活动 698527
科研通“疑难数据库(出版商)”最低求助积分说明 698404