A Supertough and Highly‐Conductive Nano‐Dipole Doped Composite Polymer Electrolyte with Hybrid Li+‐Solvation Microenvironment for Lithium Metal Batteries

材料科学 电解质 分离器(采油) 化学工程 离子电导率 快离子导体 导电聚合物 聚合物 掺杂剂 锂(药物) 复合数 兴奋剂 溶剂化 纳米技术 离子 复合材料 物理化学 有机化学 光电子学 电极 化学 医学 物理 工程类 热力学 内分泌学
作者
Shanshan Lv,Xuewei He,Zhongfeng Ji,Sifan Yang,Lanxiang Feng,Xuewei Fu,Wei Yang,Yu Wang
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:13 (44) 被引量:49
标识
DOI:10.1002/aenm.202302711
摘要

Abstract Achieving solid polymer electrolytes with ceramic‐like fast single‐ion conduction behavior, separator‐required mechanical properties, and good lithium‐dendrite suppression capability is essential but extremely challenging for the practical success of solid‐state lithium‐metal batteries. The key to overcome this long‐standing bottleneck is to rationally design the Li + ‐transport microenvironment inside the polymeric ion‐conductors. Herein, the concept of a nano‐dipole doped composite polymer electrolyte (NDCPE) is proposed using surface‐charged halloysite nanotubes (d‐HNTs) as the dopant to achieve a Li + ‐transport‐friendly microenvironment in poly(vinylidene fluoride) (PVDF) based quasi‐solid electrolytes. Results show that the d‐HNTs doping can immobilize the anions and help dissociate the lithium salt, which leads to an advanced dynamic Li + ‐interface yielding both a high Li + ‐transference number (0.75 ± 0.04) and ionic conductivity (0.29 ± 0.04 mS cm −1 @R.T.). Moreover, compared with the commercial separator, the NDCPE thin‐film shows similar toughness, mechanical strength, and puncture resistance, but much superior capability for stabilizing the lithium‐metal anode. To understand the possible doping mechanism, a hybrid Li + ‐solvation model combining the surface charges of the nanofiller, absorbed solvent molecules, and absorbed polymer chain unit is proposed and discussed for guiding the future studies on advanced hybrid solid polymer electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
xiangwangxx完成签到,获得积分20
刚刚
刚刚
凌寻冬发布了新的文献求助10
刚刚
爆米花应助孙奕采纳,获得10
刚刚
cherryhuang完成签到 ,获得积分10
2秒前
LA完成签到,获得积分10
2秒前
2秒前
Supreme发布了新的文献求助10
2秒前
可爱的函函应助Felix采纳,获得10
2秒前
飘零枫叶完成签到,获得积分10
3秒前
3秒前
恭喜发财发布了新的文献求助10
3秒前
bierbia完成签到,获得积分10
3秒前
赘婿应助TH采纳,获得10
3秒前
大宝君完成签到,获得积分0
4秒前
伶俐问薇发布了新的文献求助10
4秒前
Mine发布了新的文献求助10
4秒前
Starset应助zjw采纳,获得20
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
科研通AI6应助科研通管家采纳,获得50
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
Gauss应助科研通管家采纳,获得30
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
山人发布了新的文献求助10
7秒前
Orange应助Wonder采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600946
求助须知:如何正确求助?哪些是违规求助? 4010853
关于积分的说明 12417790
捐赠科研通 3690768
什么是DOI,文献DOI怎么找? 2034618
邀请新用户注册赠送积分活动 1067979
科研通“疑难数据库(出版商)”最低求助积分说明 952609