BR-HIDF: An Anti-Sparsity and Effective Host Intrusion Detection Framework Based on Multi-Granularity Feature Extraction

计算机科学 入侵检测系统 粒度 数据挖掘 特征提取 稳健性(进化) 寄主(生物学) 架空(工程) 基于异常的入侵检测系统 异常检测 人工智能 机器学习 生态学 生物化学 化学 生物 基因 操作系统
作者
Junjiang He,Cen Tang,Wenshan Li,Tao Li,Li Chen,Xiaolong Lan
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 485-499
标识
DOI:10.1109/tifs.2023.3324388
摘要

Host-based intrusion detection systems (HIDS) have been widely acknowledged as an effective approach for detecting and mitigating malicious activities. Among various data sources utilized in HIDS, system call traces have gained significant popularity due to their inherent advantage of providing fine-grained information. Nevertheless, conventional feature extraction techniques relying on system calls tend to overlook the issue of high-dimensional sparse feature space. In this paper, we conduct a theoretical analysis to investigate the underlying causes of the sparsity problem. Subsequently, we propose an anti-sparse theory (anti-ST) as a solution to address this issue. Then, we design a multi-granularity feature extraction method (MGFE), which also meets the prerequisite mathematical conditions of the anti-ST. By applying this method, we effectively reduce the size of the feature space and minimize the number of generated features, thus mitigating sparsity. Furthermore, leveraging this approach, we propose a robust and anti-sparsity host intrusion detection framework, known as the MGFE-based Host Intrusion Detection Framework (BR-HIDF). A series of experiments were conducted to evaluate the proposed framework and compare it with the state-of-the-art method. The results demonstrate that our framework achieves impressive accuracy (97.26%), precision (97.62%), recall (96.85%), and F1 score (97.23%) in the intrusion detection task, surpassing existing frameworks. Moreover, the proposed framework significantly reduces the time overhead by 38.80%, exhibiting the highest aUc value of 0.992. Furthermore, we enhance the robustness of the detection system by integrating host-based and network-based detection, which provides greater flexibility in identifying various types of attacks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jason完成签到,获得积分10
刚刚
1秒前
思源应助sssssss采纳,获得10
1秒前
雪雪发布了新的文献求助10
1秒前
疯狂的山楂完成签到 ,获得积分10
2秒前
未雨完成签到,获得积分10
2秒前
Akim应助wf采纳,获得10
2秒前
sunsun10086完成签到 ,获得积分10
3秒前
琦琦完成签到 ,获得积分10
3秒前
3秒前
科目三应助xanderxue采纳,获得10
3秒前
3秒前
晶晶发布了新的文献求助10
3秒前
森森完成签到,获得积分10
4秒前
4秒前
Ava应助温暖的颜演采纳,获得10
4秒前
Ky_Mac应助Lee采纳,获得20
5秒前
ww发布了新的文献求助10
5秒前
5秒前
6秒前
抗氧剂完成签到,获得积分20
7秒前
直率的玉米完成签到 ,获得积分10
7秒前
英俊的铭应助ZMl采纳,获得10
7秒前
7秒前
爆米花应助wh雨采纳,获得10
7秒前
丘比特应助冷水鱼采纳,获得10
7秒前
LiZH完成签到,获得积分10
8秒前
9秒前
传奇3应助ivy采纳,获得10
9秒前
9秒前
Persepolis完成签到,获得积分10
9秒前
mm完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
小蘑菇应助sweettt3采纳,获得10
10秒前
12秒前
花粉过敏发布了新的文献求助10
12秒前
xianglinnnn完成签到,获得积分10
12秒前
陈2026完成签到,获得积分10
12秒前
xmj发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710603
求助须知:如何正确求助?哪些是违规求助? 5199800
关于积分的说明 15261321
捐赠科研通 4863194
什么是DOI,文献DOI怎么找? 2610478
邀请新用户注册赠送积分活动 1560802
关于科研通互助平台的介绍 1518423