BR-HIDF: An Anti-Sparsity and Effective Host Intrusion Detection Framework Based on Multi-Granularity Feature Extraction

计算机科学 入侵检测系统 粒度 数据挖掘 特征提取 稳健性(进化) 寄主(生物学) 架空(工程) 基于异常的入侵检测系统 异常检测 人工智能 机器学习 生态学 生物化学 化学 生物 基因 操作系统
作者
Junjiang He,Cen Tang,Wenshan Li,Tao Li,Li Chen,Xiaolong Lan
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 485-499
标识
DOI:10.1109/tifs.2023.3324388
摘要

Host-based intrusion detection systems (HIDS) have been widely acknowledged as an effective approach for detecting and mitigating malicious activities. Among various data sources utilized in HIDS, system call traces have gained significant popularity due to their inherent advantage of providing fine-grained information. Nevertheless, conventional feature extraction techniques relying on system calls tend to overlook the issue of high-dimensional sparse feature space. In this paper, we conduct a theoretical analysis to investigate the underlying causes of the sparsity problem. Subsequently, we propose an anti-sparse theory (anti-ST) as a solution to address this issue. Then, we design a multi-granularity feature extraction method (MGFE), which also meets the prerequisite mathematical conditions of the anti-ST. By applying this method, we effectively reduce the size of the feature space and minimize the number of generated features, thus mitigating sparsity. Furthermore, leveraging this approach, we propose a robust and anti-sparsity host intrusion detection framework, known as the MGFE-based Host Intrusion Detection Framework (BR-HIDF). A series of experiments were conducted to evaluate the proposed framework and compare it with the state-of-the-art method. The results demonstrate that our framework achieves impressive accuracy (97.26%), precision (97.62%), recall (96.85%), and F1 score (97.23%) in the intrusion detection task, surpassing existing frameworks. Moreover, the proposed framework significantly reduces the time overhead by 38.80%, exhibiting the highest aUc value of 0.992. Furthermore, we enhance the robustness of the detection system by integrating host-based and network-based detection, which provides greater flexibility in identifying various types of attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
坦率的草丛完成签到,获得积分10
2秒前
浮游应助corazon采纳,获得10
3秒前
NexusExplorer应助huaming采纳,获得50
3秒前
拉拉发布了新的文献求助10
3秒前
YIDAN发布了新的文献求助10
3秒前
3秒前
3秒前
翟翟发布了新的文献求助30
4秒前
翻覆关注了科研通微信公众号
4秒前
4秒前
Jie完成签到,获得积分10
5秒前
5秒前
5秒前
CodeCraft应助飞天小猫采纳,获得10
6秒前
Dracoon完成签到,获得积分10
6秒前
李天王完成签到,获得积分10
7秒前
8秒前
chentao发布了新的文献求助10
8秒前
nh3发布了新的文献求助10
9秒前
脑洞疼应助咸蛋黄蘸酱采纳,获得10
10秒前
11秒前
11秒前
求文献发布了新的文献求助10
12秒前
爆米花应助随缘采纳,获得10
12秒前
Choi完成签到 ,获得积分10
14秒前
14秒前
小巧幼蓉发布了新的文献求助30
15秒前
15秒前
16秒前
Lilian完成签到 ,获得积分10
17秒前
蓝海湾发布了新的文献求助10
17秒前
翻覆发布了新的文献求助10
18秒前
英姑应助chentao采纳,获得10
19秒前
烟花应助麦种采纳,获得10
19秒前
19秒前
爱狗先森完成签到,获得积分10
19秒前
飞天小猫发布了新的文献求助10
20秒前
牛肉面完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062391
求助须知:如何正确求助?哪些是违规求助? 4286213
关于积分的说明 13356619
捐赠科研通 4104063
什么是DOI,文献DOI怎么找? 2247268
邀请新用户注册赠送积分活动 1252843
关于科研通互助平台的介绍 1183792