BR-HIDF: An Anti-Sparsity and Effective Host Intrusion Detection Framework Based on Multi-Granularity Feature Extraction

计算机科学 入侵检测系统 粒度 数据挖掘 特征提取 稳健性(进化) 寄主(生物学) 架空(工程) 基于异常的入侵检测系统 异常检测 人工智能 机器学习 生态学 生物化学 化学 生物 基因 操作系统
作者
Junjiang He,Cen Tang,Wenshan Li,Tao Li,Li Chen,Xiaolong Lan
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 485-499
标识
DOI:10.1109/tifs.2023.3324388
摘要

Host-based intrusion detection systems (HIDS) have been widely acknowledged as an effective approach for detecting and mitigating malicious activities. Among various data sources utilized in HIDS, system call traces have gained significant popularity due to their inherent advantage of providing fine-grained information. Nevertheless, conventional feature extraction techniques relying on system calls tend to overlook the issue of high-dimensional sparse feature space. In this paper, we conduct a theoretical analysis to investigate the underlying causes of the sparsity problem. Subsequently, we propose an anti-sparse theory (anti-ST) as a solution to address this issue. Then, we design a multi-granularity feature extraction method (MGFE), which also meets the prerequisite mathematical conditions of the anti-ST. By applying this method, we effectively reduce the size of the feature space and minimize the number of generated features, thus mitigating sparsity. Furthermore, leveraging this approach, we propose a robust and anti-sparsity host intrusion detection framework, known as the MGFE-based Host Intrusion Detection Framework (BR-HIDF). A series of experiments were conducted to evaluate the proposed framework and compare it with the state-of-the-art method. The results demonstrate that our framework achieves impressive accuracy (97.26%), precision (97.62%), recall (96.85%), and F1 score (97.23%) in the intrusion detection task, surpassing existing frameworks. Moreover, the proposed framework significantly reduces the time overhead by 38.80%, exhibiting the highest aUc value of 0.992. Furthermore, we enhance the robustness of the detection system by integrating host-based and network-based detection, which provides greater flexibility in identifying various types of attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bububusbu完成签到,获得积分10
2秒前
2秒前
汉堡包应助风趣夜云采纳,获得10
3秒前
Aurora的努力日记完成签到,获得积分10
3秒前
8秒前
sherrinford完成签到,获得积分10
9秒前
huhaha完成签到,获得积分10
9秒前
10秒前
火星上语风应助lovingmyway采纳,获得40
10秒前
汉堡包应助兔孖采纳,获得10
11秒前
11秒前
韦行天完成签到,获得积分10
11秒前
科研小白完成签到,获得积分10
15秒前
所所应助从容的灵凡采纳,获得10
16秒前
16秒前
敏er完成签到 ,获得积分10
17秒前
Christina完成签到,获得积分10
21秒前
22秒前
zhouleibio完成签到,获得积分10
23秒前
24秒前
脑洞疼应助进口小宵采纳,获得10
25秒前
单纯铃铛发布了新的文献求助10
25秒前
29秒前
liu bo完成签到,获得积分10
30秒前
笔记本应助lovingmyway采纳,获得40
30秒前
要开心发布了新的文献求助30
31秒前
时567完成签到,获得积分10
34秒前
健壮雨兰完成签到,获得积分10
34秒前
摆烂完成签到 ,获得积分10
34秒前
wang发布了新的文献求助10
35秒前
36秒前
sunyanghu369发布了新的文献求助10
36秒前
一杯奶茶完成签到,获得积分10
36秒前
38秒前
39秒前
搜集达人应助西米采纳,获得10
40秒前
he发布了新的文献求助10
40秒前
劲秉应助jinhuanghuiyu采纳,获得10
41秒前
汉堡包应助张老汉采纳,获得10
41秒前
赶紧大聪明完成签到,获得积分10
41秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464375
求助须知:如何正确求助?哪些是违规求助? 3057766
关于积分的说明 9058185
捐赠科研通 2747760
什么是DOI,文献DOI怎么找? 1507609
科研通“疑难数据库(出版商)”最低求助积分说明 696587
邀请新用户注册赠送积分活动 696182