EEGAlzheimer’sNet: Development of transformer-based attention long short term memory network for detecting Alzheimer disease using EEG signal

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 深度学习 脑电图 小波 循环神经网络 人工神经网络 心理学 精神科
作者
Dileep kumar Ravikanti,S. Saravanan
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 105318-105318 被引量:16
标识
DOI:10.1016/j.bspc.2023.105318
摘要

A previous diagnosis of Alzheimer's disease (AD) in its initial stages is needed for patient care because it helps patients adopt preventative measures before irreversible brain damage occurs. Several studies have used computers to detect AD, although hereditary results limit most computer detection methods. There is no straightforward method to screen for AD, partly because the condition is difficult to diagnose and sometimes requires costly and occasionally intrusive testing that is uncommon outside of highly specialized clinical settings. Therefore, this study implements a deep learning strategy for detecting AD with the help of the "Electroencephalogram (EEG)" signal. Initially, the required EEG signal is obtained from traditional online databases and then applied to the 3-level "Lifting Wavelet Transform (LWT)" decomposition to decompose the signal into many wavelets. From the decomposed signal, the temporal features are retrieved by a "Recurrent Neural Network (RNN)", and the spatial features are extracted from a "Multi-scale dilated Convolutional Neural Network (CNN)". Further, the Enhanced Wild Geese Lemurs Optimizer (EWGLO) algorithm is implemented to find the optimal weight value for acquiring the weighted stacked features. These resultant weighted stacked features are applied to the semi-detection stage, where the "Optimized Transformer-based Attention Long Short Term Memory (OTA-LSTM)" model is utilized to detect AD. In the detection stage, parameter optimization takes place to increase the performance of the detection process using the same EWGLO. The designed model is validated with various performance metrics to show the effective outcome. Moreover, the developed model attains 96% and 98% in terms of accuracy and MCC. Throughout the validation, the offered model shows enriched performance when compared with other-state-of-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好好喝水完成签到,获得积分10
1秒前
金闪闪完成签到 ,获得积分10
1秒前
科研通AI2S应助自然乌龟采纳,获得10
1秒前
巴斯光年完成签到,获得积分20
2秒前
2秒前
鳗鱼灵寒完成签到,获得积分10
3秒前
3秒前
ting5260完成签到,获得积分10
4秒前
yao完成签到,获得积分10
4秒前
!!完成签到,获得积分10
4秒前
neeeru完成签到,获得积分10
4秒前
5秒前
5秒前
丘比特应助大大怪采纳,获得10
5秒前
yydsyk完成签到,获得积分10
5秒前
YixiaoWang发布了新的文献求助10
6秒前
小刷子完成签到,获得积分10
6秒前
Aom发布了新的文献求助20
7秒前
可宝想当富婆完成签到 ,获得积分10
7秒前
火星上的天思完成签到,获得积分10
7秒前
7秒前
LIN完成签到,获得积分10
7秒前
JamesPei应助缓慢易云采纳,获得10
8秒前
CodeCraft应助Laraine采纳,获得10
9秒前
9秒前
卉酱完成签到,获得积分10
9秒前
Kate完成签到,获得积分10
9秒前
林夏发布了新的文献求助10
9秒前
小思雅发布了新的文献求助10
9秒前
ZJCGD发布了新的文献求助10
10秒前
踹脸大妈完成签到,获得积分10
10秒前
佳仪完成签到 ,获得积分10
12秒前
12秒前
12秒前
12秒前
12秒前
Akim应助哎呀呀采纳,获得10
13秒前
sljzhangbiao11完成签到,获得积分10
14秒前
宋宋关注了科研通微信公众号
14秒前
JamesPei应助12334采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582