Adjacent-Level Feature Cross-Fusion With 3-D CNN for Remote Sensing Image Change Detection

保险丝(电气) 计算机科学 特征(语言学) 卷积(计算机科学) 人工智能 特征提取 模式识别(心理学) 卷积神经网络 图像融合 融合 深度学习 像素 遥感 图像(数学) 人工神经网络 哲学 语言学 地质学 电气工程 工程类
作者
Yuanxin Ye,Mengmeng Wang,Liang Zhou,Guangyang Lei,Jianwei Fan,Yao Qin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:30
标识
DOI:10.1109/tgrs.2023.3305499
摘要

Deep learning-based change detection (CD) using remote sensing images has received increasing attention in recent years. However, how to effectively extract and fuse the deep features of bi-temporal images for improving the accuracy of CD is still a challenge. To address that, a novel adjacent-level feature fusion network with 3D convolution (named AFCF3D-Net) is proposed in this article. First, through the inner fusion property of 3D convolution, we design a new feature fusion way that can simultaneously extract and fuse the feature information from bi-temporal images. Then, to alleviate the semantic gap between low-level features and high-level features, we propose an adjacent-level feature cross-fusion (AFCF) module to aggregate complementary feature information between the adjacent levels. Furthermore, the full-scale skip connection strategy is introduced to improve the capability of pixel-wise prediction and the compactness of changed objects in the results. Finally, the proposed AFCF3D-Net has been validated on the three challenging remote sensing CD datasets: the Wuhan building dataset (WHU-CD), the LEVIR building dataset (LEVIR-CD), and the Sun Yat-Sen University dataset (SYSU-CD). The results of quantitative analysis and qualitative comparison demonstrate that the proposed AFCF3D-Net achieves better performance compared to other state-of-the-art methods. The code for this work is available at https://github.com/wm-Githuber/AFCF3D-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
库外发布了新的文献求助10
2秒前
汉堡包应助清新的冷松采纳,获得10
2秒前
从心应助LiShin采纳,获得10
2秒前
帅气的听莲完成签到,获得积分10
2秒前
英姑应助Areslcy采纳,获得10
2秒前
善学以致用应助zxz采纳,获得10
3秒前
whatever应助luoshi采纳,获得10
4秒前
4秒前
科研通AI5应助徐徐采纳,获得10
5秒前
shouyu29应助MADKAI采纳,获得10
5秒前
shouyu29应助MADKAI采纳,获得10
5秒前
Lucas应助MADKAI采纳,获得10
5秒前
Vii应助MADKAI采纳,获得10
5秒前
李爱国应助MADKAI采纳,获得10
5秒前
李健应助MADKAI采纳,获得10
5秒前
烟花应助MADKAI采纳,获得20
5秒前
香蕉觅云应助MADKAI采纳,获得10
5秒前
科研通AI2S应助MADKAI采纳,获得10
5秒前
Singularity应助MADKAI采纳,获得10
5秒前
6秒前
6秒前
赘婿应助GGZ采纳,获得10
6秒前
阿盛完成签到,获得积分10
6秒前
6秒前
怕孤单的含羞草完成签到 ,获得积分10
7秒前
Muuu发布了新的文献求助10
7秒前
仁爱的乐枫完成签到,获得积分10
8秒前
8秒前
金润完成签到,获得积分10
9秒前
ZZ完成签到,获得积分10
9秒前
AteeqBaloch发布了新的文献求助10
10秒前
PaulLao完成签到,获得积分10
10秒前
10秒前
fleee发布了新的文献求助10
10秒前
10秒前
11秒前
Luyao发布了新的文献求助10
11秒前
海派Hi完成签到 ,获得积分10
11秒前
依依完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762