FOXP3型
岩藻糖基化
免疫系统
癌症研究
肿瘤微环境
免疫疗法
免疫学
生物
癌症免疫疗法
癌症
免疫检查点
背景(考古学)
调节性T细胞
白细胞介素2受体
T细胞
遗传学
聚糖
古生物学
糖蛋白
作者
Sotiria Pinioti,Himal Sharma,Nina C. Flerin,Qian Yu,Amalia Tzoumpa,Sarah Trusso Cafarello,Elien De Bousser,Nico Callewaert,Guillaume Oldenhove,Susan Schlenner,Bernard Thienpont,Abhishek D. Garg,Mario Di Matteo,Massimiliano Mazzone
出处
期刊:Cancer immunology research
[American Association for Cancer Research]
日期:2023-11-07
卷期号:11 (12): 1611-1629
被引量:2
标识
DOI:10.1158/2326-6066.cir-22-0606
摘要
Abstract Forkhead box P3 (Foxp3)–expressing regulatory T cells (Treg) are the guardians of controlled immune reactions and prevent the development of autoimmune diseases. However, in the tumor context, their increased number suppresses antitumor immune responses, indicating the importance of understanding the mechanisms behind their function and stability. Metabolic reprogramming can affect Foxp3 regulation and, therefore, Treg suppressive function and fitness. Here, we performed a metabolic CRISPR/Cas9 screen and pinpointed novel candidate positive and negative metabolic regulators of Foxp3. Among the positive regulators, we revealed that targeting the GDP-fucose transporter Slc35c1, and more broadly fucosylation (Fuco), in Tregs compromises their proliferation and suppressive function both in vitro and in vivo, leading to alteration of the tumor microenvironment and impaired tumor progression and protumoral immune responses. Pharmacologic inhibition of Fuco dampened tumor immunosuppression mostly by targeting Tregs, thus resulting in reduced tumor growth. In order to substantiate these findings in humans, tumoral Tregs from patients with colorectal cancer were clustered on the basis of the expression of Fuco-related genes. FucoLOW Tregs were found to exhibit a more immunogenic profile compared with FucoHIGH Tregs. Furthermore, an enrichment of a FucoLOW signature, mainly derived from Tregs, correlated with better prognosis and response to immune checkpoint blockade in melanoma patients. In conclusion, Slc35c1-dependent Fuco is able to regulate the suppressive function of Tregs, and measuring its expression in Tregs might pave the way towards a useful biomarker model for patients with cancer. See related Spotlight by Silveria and DuPage, p. 1570
科研通智能强力驱动
Strongly Powered by AbleSci AI