过剩4
内科学
胰岛素抵抗
内分泌学
蛋白激酶B
胰岛素受体
PI3K/AKT/mTOR通路
链脲佐菌素
胰岛素
过氧化物酶体增殖物激活受体
IRS1
化学
糖原
糖尿病
葡萄糖稳态
医学
信号转导
受体
生物化学
作者
Shaohua Wu,Wenwei Ai,Lei Nie,Xiao Lü
摘要
Eupafolin is a phyto compound of flavone that exerts anti-inflammatory, antioxidant, and antiproliferative properties. The main purpose of this study is to examine the antidiabetic effect of eupafolin on nicotinamide-streptozotocin (STZ)-induced Type 2 diabetes (T2D) rats. After nicotinamide (120 mg/kg) treatment, STZ (60 mg/kg) was administrated intravenously to induce T2D. Rats with fasting blood glucose (FBG) > 200 mg/dL are chosen for the study 7 days after T2D induction. The eupafolin treatment was continued for another 15 days. FBG and an oral glucose tolerance test (OGTT) were measured on the 21st day after T2D induction. The blood lipid, serum insulin, and homeostatic model assessment (HOMA-IR) were determined. In liver homogenate, oxidative stress indicators were measured. In addition, the effect of eupafolin on the expression of the proteins InsR, insulin receptor substrate (IRS)-2, GLUT4, PPARγ, and phosphatidylinositol 3-kinase (PI3K)/Akt was investigated using a western blot. As measured by OGTT and HOMA-IR, eupafolin treatment reduced FBG and insulin resistance (IR). Furthermore, when compared to diabetic rats, liver antioxidant enzymes were dramatically normalized. The level of glycogen in the liver of diabetic rats was increased by eupafolin treatment. In T2D rats, eupafolin dramatically increased the InsR, IRS-2, GLUT4, and PPARγ. Further, the eupafolin treatment activated the PI3K/Akt signaling in T2D rats. These findings imply that the antidiabetic mechanism of eupafolin may be related to the activation of the PPARγ and the PI3K/Akt signaling pathway in T2D rats. As a result, the flavonoid eupafolin could be an antidiabetic medication for T2D after a comprehensive clinical investigation.
科研通智能强力驱动
Strongly Powered by AbleSci AI