Interface engineering of a GaN/In2O3 heterostructure for highly efficient electrocatalytic CO2 reduction to formate

材料科学 格式化 化学工程 催化作用 煅烧 异质结 选择性 无机化学 纳米技术 化学 光电子学 有机化学 工程类
作者
Xuan Li,Xingxing Jiang,Yan Kong,Jianju Sun,Qi Hu,Xiaoyan Chai,Hengpan Yang,Chuanxin He
出处
期刊:Chinese Journal of Catalysis [China Science Publishing & Media Ltd.]
卷期号:50: 314-323 被引量:3
标识
DOI:10.1016/s1872-2067(23)64455-9
摘要

Electrocatalytic CO2 reduction reaction (eCO2RR) to obtain formate is a promising method to consume CO2 and alleviate the energy crisis. Indium-based electrocatalysts have demonstrated considerable potential to produce formate. However, their unsatisfactory long-term stability and selectivity restrict their widespread application. In this study, a heterostructure of GaN- and In2O3-encapsulated porous carbon nanofibers was constructed via electrospinning and the phase transition of eutectic gallium-indium during calcination. The GaN and In2O3 nanoparticle-encapsulated porous carbon nanofibers, when used as electrocatalysts for eCO2RR, displayed high formate selectivity with a faradaic efficiency of 87% and maximum partial current density of 29.7 mA cm−2 in a 0.5 mol L−1 KHCO3 aqueous solution. The existence of the interface can cause a positive shift in the In 3d binding energy, leading to electronic redistribution. Moreover, the GaN component induced a higher proportion of O-vacancy sites in the In2O3 phase, resulting in improved selectivity for CO2-to-formate. In-situ Raman experiments and density functional theory calculations revealed that the interface between GaN and In2O3 could lower the adsorption energy of the key intermediates for formate production, thus providing superior eCO2RR performance. In addition, the framework of the porous carbon nanofibers exhibited a large electrochemically active surface area, which enabled the full exposure of the active sites. This study highlights the cooperation between GaN and In2O3 components and provides new insights into the rational design of catalysts with high CO2-to-formate conversion efficiencies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辉q完成签到,获得积分20
1秒前
2秒前
4秒前
4秒前
热情诗云完成签到,获得积分10
4秒前
4秒前
辉q发布了新的文献求助10
5秒前
5秒前
6秒前
科研靓仔发布了新的文献求助10
6秒前
CipherSage应助Faceman采纳,获得10
6秒前
jeeya完成签到,获得积分10
6秒前
7秒前
7秒前
zqh应助mbf采纳,获得10
9秒前
彭于晏应助baolong采纳,获得10
10秒前
11秒前
英姑应助辉q采纳,获得10
13秒前
甜的瓜发布了新的文献求助10
13秒前
13秒前
Herolee发布了新的文献求助200
13秒前
周1发布了新的文献求助30
14秒前
15秒前
FashionBoy应助热塑性哈士奇采纳,获得10
16秒前
科目三应助无奈的凡双采纳,获得10
16秒前
16秒前
17秒前
完美世界应助aha采纳,获得10
17秒前
18秒前
瘦瘦的铅笔完成签到 ,获得积分10
19秒前
孙悦发布了新的文献求助10
19秒前
zzz发布了新的文献求助10
20秒前
22秒前
22秒前
Jasper应助gyl采纳,获得10
26秒前
27秒前
酥酥完成签到 ,获得积分10
27秒前
27秒前
31秒前
31秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171184
求助须知:如何正确求助?哪些是违规求助? 2822083
关于积分的说明 7937925
捐赠科研通 2482524
什么是DOI,文献DOI怎么找? 1322654
科研通“疑难数据库(出版商)”最低求助积分说明 633669
版权声明 602627