Interface engineering of a GaN/In2O3 heterostructure for highly efficient electrocatalytic CO2 reduction to formate

材料科学 格式化 化学工程 催化作用 煅烧 异质结 选择性 无机化学 纳米技术 化学 光电子学 有机化学 工程类
作者
Xuan Li,Xingxing Jiang,Yan Kong,Jianju Sun,Qi Hu,Xiaoyan Chai,Hengpan Yang,Chuanxin He
出处
期刊:Chinese Journal of Catalysis [China Science Publishing & Media Ltd.]
卷期号:50: 314-323 被引量:3
标识
DOI:10.1016/s1872-2067(23)64455-9
摘要

Electrocatalytic CO2 reduction reaction (eCO2RR) to obtain formate is a promising method to consume CO2 and alleviate the energy crisis. Indium-based electrocatalysts have demonstrated considerable potential to produce formate. However, their unsatisfactory long-term stability and selectivity restrict their widespread application. In this study, a heterostructure of GaN- and In2O3-encapsulated porous carbon nanofibers was constructed via electrospinning and the phase transition of eutectic gallium-indium during calcination. The GaN and In2O3 nanoparticle-encapsulated porous carbon nanofibers, when used as electrocatalysts for eCO2RR, displayed high formate selectivity with a faradaic efficiency of 87% and maximum partial current density of 29.7 mA cm−2 in a 0.5 mol L−1 KHCO3 aqueous solution. The existence of the interface can cause a positive shift in the In 3d binding energy, leading to electronic redistribution. Moreover, the GaN component induced a higher proportion of O-vacancy sites in the In2O3 phase, resulting in improved selectivity for CO2-to-formate. In-situ Raman experiments and density functional theory calculations revealed that the interface between GaN and In2O3 could lower the adsorption energy of the key intermediates for formate production, thus providing superior eCO2RR performance. In addition, the framework of the porous carbon nanofibers exhibited a large electrochemically active surface area, which enabled the full exposure of the active sites. This study highlights the cooperation between GaN and In2O3 components and provides new insights into the rational design of catalysts with high CO2-to-formate conversion efficiencies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
学习猴发布了新的文献求助10
刚刚
充电宝应助炙热的如柏采纳,获得10
1秒前
所所应助qzaima采纳,获得10
1秒前
米兰达完成签到 ,获得积分0
2秒前
xg发布了新的文献求助10
4秒前
Loooong应助Ni采纳,获得10
5秒前
5秒前
WZ0904发布了新的文献求助10
5秒前
顾矜应助博ge采纳,获得10
7秒前
7秒前
Lotus发布了新的文献求助10
8秒前
9秒前
仁爱仙人掌完成签到,获得积分10
11秒前
ywang发布了新的文献求助10
11秒前
13秒前
13秒前
13秒前
ewqw关注了科研通微信公众号
14秒前
曦小蕊完成签到 ,获得积分10
14秒前
15秒前
16秒前
16秒前
奋斗灵波发布了新的文献求助10
16秒前
药学牛马发布了新的文献求助10
16秒前
16秒前
科研通AI5应助WZ0904采纳,获得10
17秒前
叶未晞yi发布了新的文献求助10
18秒前
ipeakkka发布了新的文献求助10
19秒前
Jzhang应助迷人的映雁采纳,获得10
19秒前
19秒前
zzz完成签到,获得积分10
20秒前
20秒前
小安发布了新的文献求助10
20秒前
21秒前
叶未晞yi完成签到,获得积分10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得30
23秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824