The Potential of a CT-Based Machine Learning Radiomics Analysis to Differentiate Brucella and Pyogenic Spondylitis

脊柱炎 布鲁氏菌 医学 无线电技术 布鲁氏菌病 放射科 人工智能 计算机科学 外科 免疫学 强直性脊柱炎
作者
Parhat Yasin,Muradil Mardan,Dilxat Abliz,Tao Xu,Nuerbiyan Keyoumu,Abasi Aimaiti,Xiaoyu Cai,Weibin Sheng,Mardan Mamat
出处
期刊:Journal of Inflammation Research [Dove Medical Press]
卷期号:Volume 16: 5585-5600 被引量:1
标识
DOI:10.2147/jir.s429593
摘要

Background: Pyogenic spondylitis (PS) and Brucella spondylitis (BS) are common spinal infections with similar manifestations, making their differentiation challenging. This study aimed to explore the potential of CT-based radiomics features combined with machine learning algorithms to differentiate PS from BS. Methods: This retrospective study involved the collection of clinical and radiological information from 138 patients diagnosed with either PS or BS in our hospital between January 2017 and December 2022, based on histopathology examination and/or germ isolations. The region of interest (ROI) was defined by two radiologists using a 3D Slicer open-source platform, utilizing blind analysis of sagittal CT images against histopathological examination results. PyRadiomics, a Python package, was utilized to extract ROI features. Several methods were performed to reduce the dimensionality of the extracted features. Machine learning algorithms were trained and evaluated using techniques like the area under the receiver operating characteristic curve (AUC; confusion matrix-related metrics, calibration plot, and decision curve analysis to assess their ability to differentiate PS from BS. Additionally, permutation feature importance (PFI; local interpretable model-agnostic explanations (LIME; and Shapley additive explanation (SHAP) techniques were utilized to gain insights into the interpretabilities of the models that are otherwise considered opaque black-boxes. Results: A total of 15 radiomics features were screened during the analysis. The AUC value and Brier score of best the model were 0.88 and 0.13, respectively. The calibration plot and decision curve analysis displayed higher clinical efficiency in the differential diagnosis. According to the interpretation results, the most impactful features on the model output were wavelet LHL small dependence low gray-level emphasis (GLDN). Conclusion: The CT-based radiomics models that we developed have proven to be useful in reliably differentiating between PS and BS at an early stage and can provide a reliable explanation for the classification results. Keywords: Brucella spondylitis, Pyogenic spondylitis, machine learning, radiomics, model interpretation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
y915840635应助TTK采纳,获得500
1秒前
英俊的胜发布了新的文献求助10
5秒前
lulu123发布了新的文献求助30
5秒前
osmanthus发布了新的文献求助10
7秒前
xuex1完成签到,获得积分10
8秒前
科目三应助maqin采纳,获得10
8秒前
CipherSage应助吴晨曦采纳,获得10
11秒前
爆米花应助ranqi采纳,获得10
14秒前
CipherSage应助文静采纳,获得10
15秒前
15秒前
Ava应助lin采纳,获得10
19秒前
陈糯米发布了新的文献求助10
20秒前
英姑应助RONG采纳,获得10
21秒前
Dr.Dream完成签到,获得积分10
24秒前
25秒前
领导范儿应助拓跋涵易采纳,获得10
25秒前
26秒前
27秒前
伤逝1990完成签到 ,获得积分10
28秒前
Shaw发布了新的文献求助30
29秒前
脑洞疼应助华东小可爱采纳,获得10
29秒前
顾矜应助陈糯米采纳,获得10
30秒前
万能图书馆应助的的的墨采纳,获得10
30秒前
小小发布了新的文献求助10
30秒前
嗒嗒嗒薇发布了新的文献求助10
31秒前
Jj7完成签到,获得积分10
31秒前
乃惜完成签到,获得积分10
32秒前
Jasper应助slin_sjtu采纳,获得10
32秒前
有趣的银完成签到,获得积分10
33秒前
Honolulu完成签到 ,获得积分10
34秒前
红箭烟雨完成签到,获得积分10
34秒前
34秒前
Fff完成签到 ,获得积分10
34秒前
刻苦的幻巧完成签到 ,获得积分10
35秒前
36秒前
Shaw完成签到,获得积分10
39秒前
lin发布了新的文献求助10
39秒前
田様应助sunfenghong采纳,获得10
39秒前
awu发布了新的文献求助10
39秒前
40秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3377981
求助须知:如何正确求助?哪些是违规求助? 2993757
关于积分的说明 8756080
捐赠科研通 2678148
什么是DOI,文献DOI怎么找? 1467069
科研通“疑难数据库(出版商)”最低求助积分说明 678512
邀请新用户注册赠送积分活动 670138