Effect of Zn2+, S2−, Mo4+ and V5+ single doped BiTa7O19:Er3+/Yb3+ on upconversion luminescence intensity under 980 nm laser excitation

光子上转换 激发 分析化学(期刊) 兴奋剂 功率密度 发光 材料科学 激光器 荧光粉 化学 光学 光电子学 功率(物理) 物理 量子力学 色谱法
作者
Lei Li,Yongze Cao,Tianshuo Liu,Xianglan Yan,Xuekai Wang,Jinsu Zhang,Xizhen Zhang,Baojiu Chen
出处
期刊:Journal of Luminescence [Elsevier]
卷期号:267: 120341-120341 被引量:3
标识
DOI:10.1016/j.jlumin.2023.120341
摘要

On the basis of BiTa7O19 (BTO):0.1Er3+/0.4Yb3+, Zn2+, S2−, Mo4+ and V5+ single doped upconversion phosphors (UCP) were successfully prepared by solid phase sintering. The lattice structure, particle size and diffuse reflectance spectra were measured by X-ray diffraction, scanning electron microscope and spectrophotometer. Upconversion luminescence (UCL) spectra of these UCP were investigated under 980 nm laser excitation with power density from 1.82 to 124.99 W/cm2. Zn2+ doped UCP can obtain the highest UCL intensity when excitation power density is less than 56.91 W/cm2, and Mo4+ doped UCP can obtain the highest UCL intensity when excitation power density is from 56.91 to 124.99 W/cm2. The UCL intensity of all samples increases first and then decreases with the increase of excitation power. By measuring UCL intensity changes with the excitation power of the UCP mixing with BN and UCP in vacuum and atmosphere, the experimental results show that the increase of temperature caused by laser excitation is the reason for the decrease of UCL intensity under high power excitation. Utilizing LIR technology, it is proven that at high power 90.95 W/cm2, Mo4+ and Zn2+ single doped can decrease and increase the UCP temperature under the same power density excitation compared with BTO:0.1Er3+/0.4Yb3+, respectively. The maximum relative temperature sensitivity of all UCP is calculated in the range of 0.00767–0.00854 K−1 at 303 K. All experiments show that Zn2+ and Mo4+ single-doped UCP are suitable for temperature sensing and luminescence imaging under low and high-power excitation, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
criz1发布了新的文献求助10
2秒前
白潇潇发布了新的文献求助10
2秒前
科研通AI6应助渡月桥采纳,获得10
3秒前
sfc999完成签到,获得积分10
4秒前
wangjialong发布了新的文献求助10
5秒前
Matthew_G完成签到,获得积分10
5秒前
6秒前
figure完成签到 ,获得积分10
6秒前
林白发布了新的文献求助30
6秒前
斯文败类应助花卷采纳,获得10
6秒前
111111发布了新的文献求助10
7秒前
苹果完成签到 ,获得积分20
8秒前
幽默阑悦完成签到,获得积分10
8秒前
9秒前
科研通AI6应助懦弱的丹秋采纳,获得10
11秒前
11秒前
无花果应助雪落采纳,获得10
12秒前
mdjinij发布了新的文献求助10
12秒前
12秒前
12秒前
悠悠发布了新的文献求助10
12秒前
小宋娘亲完成签到 ,获得积分10
13秒前
Ran完成签到 ,获得积分10
13秒前
Murphy完成签到,获得积分10
14秒前
15秒前
菠菜应助herococa采纳,获得150
16秒前
17秒前
18秒前
UP发布了新的文献求助10
18秒前
criz1完成签到,获得积分10
19秒前
19秒前
Ava应助白潇潇采纳,获得10
19秒前
无极微光应助岁月旧曾谙采纳,获得20
20秒前
bkagyin应助张佳宁采纳,获得10
20秒前
阳光绝山完成签到,获得积分20
20秒前
21秒前
wangjialong完成签到,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648573
求助须知:如何正确求助?哪些是违规求助? 4775700
关于积分的说明 15044558
捐赠科研通 4807505
什么是DOI,文献DOI怎么找? 2570811
邀请新用户注册赠送积分活动 1527652
关于科研通互助平台的介绍 1486501