人类白细胞抗原
计算机科学
班级(哲学)
计算生物学
抗原处理
抗原
抗原呈递
人工智能
生物
T细胞
免疫学
免疫系统
作者
Jonas Birkelund Nilsson,Saghar Kaabinejadian,Hooman Yari,Michel G.D. Kester,Peter van Balen,William H. Hildebrand,Morten Nielsen
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2023-11-24
卷期号:9 (47)
被引量:8
标识
DOI:10.1126/sciadv.adj6367
摘要
Accurate prediction of antigen presentation by human leukocyte antigen (HLA) class II molecules is crucial for rational development of immunotherapies and vaccines targeting CD4 + T cell activation. So far, most prediction methods for HLA class II antigen presentation have focused on HLA-DR because of limited availability of immunopeptidomics data for HLA-DQ and HLA-DP while not taking into account alternative peptide binding modes. We present an update to the NetMHCIIpan prediction method, which closes the performance gap between all three HLA class II loci. We accomplish this by first integrating large immunopeptidomics datasets describing the HLA class II specificity space across all loci using a refined machine learning framework that accommodates inverted peptide binders. Next, we apply targeted immunopeptidomics assays to generate data that covers additional HLA-DP specificities. The final method, NetMHCIIpan-4.3, achieves high accuracy and molecular coverage across all HLA class II allotypes .
科研通智能强力驱动
Strongly Powered by AbleSci AI