Intelligent inspection of appearance quality for precast concrete components based on improved YOLO model and multi-source data

预制混凝土 过程(计算) 质量(理念) 计算机科学 点云 点(几何) 工程类 人工智能 土木工程 几何学 数学 认识论 操作系统 哲学
作者
Yangze Liang,Zhao Xu
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/ecam-07-2023-0705
摘要

Purpose Monitoring of the quality of precast concrete (PC) components is crucial for the success of prefabricated construction projects. Currently, quality monitoring of PC components during the construction phase is predominantly done manually, resulting in low efficiency and hindering the progress of intelligent construction. This paper presents an intelligent inspection method for assessing the appearance quality of PC components, utilizing an enhanced you look only once (YOLO) model and multi-source data. The aim of this research is to achieve automated management of the appearance quality of precast components in the prefabricated construction process through digital means. Design/methodology/approach The paper begins by establishing an improved YOLO model and an image dataset for evaluating appearance quality. Through object detection in the images, a preliminary and efficient assessment of the precast components' appearance quality is achieved. Moreover, the detection results are mapped onto the point cloud for high-precision quality inspection. In the case of precast components with quality defects, precise quality inspection is conducted by combining the three-dimensional model data obtained from forward design conversion with the captured point cloud data through registration. Additionally, the paper proposes a framework for an automated inspection platform dedicated to assessing appearance quality in prefabricated buildings, encompassing the platform's hardware network. Findings The improved YOLO model achieved a best mean average precision of 85.02% on the VOC2007 dataset, surpassing the performance of most similar models. After targeted training, the model exhibits excellent recognition capabilities for the four common appearance quality defects. When mapped onto the point cloud, the accuracy of quality inspection based on point cloud data and forward design is within 0.1 mm. The appearance quality inspection platform enables feedback and optimization of quality issues. Originality/value The proposed method in this study enables high-precision, visualized and automated detection of the appearance quality of PC components. It effectively meets the demand for quality inspection of precast components on construction sites of prefabricated buildings, providing technological support for the development of intelligent construction. The design of the appearance quality inspection platform's logic and framework facilitates the integration of the method, laying the foundation for efficient quality management in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助深情映冬采纳,获得10
2秒前
sun发布了新的文献求助20
2秒前
2秒前
2秒前
xiaxia完成签到 ,获得积分10
3秒前
丰富的宛亦完成签到 ,获得积分10
3秒前
Fly发布了新的文献求助10
5秒前
科目三应助西米采纳,获得10
5秒前
coffee完成签到,获得积分10
6秒前
Only发布了新的文献求助10
6秒前
sjc完成签到,获得积分10
6秒前
David完成签到,获得积分10
7秒前
chnningji发布了新的文献求助10
7秒前
7秒前
AgDragon发布了新的文献求助10
7秒前
8秒前
Try发布了新的文献求助10
10秒前
充电宝应助WANG666采纳,获得30
10秒前
喜羊羊完成签到,获得积分10
10秒前
sjc发布了新的文献求助10
11秒前
11秒前
Ava应助haonanchen采纳,获得10
12秒前
左辄发布了新的文献求助10
12秒前
Miao发布了新的文献求助10
12秒前
13秒前
西米完成签到,获得积分10
13秒前
anna521212发布了新的文献求助20
13秒前
14秒前
14秒前
15秒前
领导范儿应助启震采纳,获得10
15秒前
a龙发布了新的文献求助10
15秒前
西米发布了新的文献求助10
16秒前
Twx完成签到,获得积分10
18秒前
19秒前
不困发布了新的文献求助10
19秒前
20秒前
21秒前
农学小王完成签到 ,获得积分10
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
中国心血管健康与疾病报告2023(要完整的报告) 500
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3102795
求助须知:如何正确求助?哪些是违规求助? 2754032
关于积分的说明 7626280
捐赠科研通 2406879
什么是DOI,文献DOI怎么找? 1277068
科研通“疑难数据库(出版商)”最低求助积分说明 617041
版权声明 599103