Prompt-NER: Zero-shot Named Entity Recognition in Astronomy Literature via Large Language Models

零(语言学) 弹丸 命名实体识别 自然语言处理 计算机科学 语言学 人工智能 哲学 工程类 任务(项目管理) 化学 有机化学 系统工程
作者
Wujun Shao,Yaohua Hu,Pengli Ji,Xiaoran Yan,Dongwei Fan,Rui Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2310.17892
摘要

Astronomical knowledge entities, such as celestial object identifiers, are crucial for literature retrieval and knowledge graph construction, and other research and applications in the field of astronomy. Traditional methods of extracting knowledge entities from texts face challenges like high manual effort, poor generalization, and costly maintenance. Consequently, there is a pressing need for improved methods to efficiently extract them. This study explores the potential of pre-trained Large Language Models (LLMs) to perform astronomical knowledge entity extraction (KEE) task from astrophysical journal articles using prompts. We propose a prompting strategy called Prompt-KEE, which includes five prompt elements, and design eight combination prompts based on them. Celestial object identifier and telescope name, two most typical astronomical knowledge entities, are selected to be experimental object. And we introduce four currently representative LLMs, namely Llama-2-70B, GPT-3.5, GPT-4, and Claude 2. To accommodate their token limitations, we construct two datasets: the full texts and paragraph collections of 30 articles. Leveraging the eight prompts, we test on full texts with GPT-4 and Claude 2, on paragraph collections with all LLMs. The experimental results demonstrated that pre-trained LLMs have the significant potential to perform KEE tasks in astrophysics journal articles, but there are differences in their performance. Furthermore, we analyze some important factors that influence the performance of LLMs in entity extraction and provide insights for future KEE tasks in astrophysical articles using LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
UDzHC完成签到,获得积分10
3秒前
4秒前
梦霖发布了新的文献求助10
5秒前
5秒前
枍枫发布了新的文献求助10
5秒前
zyc1111111完成签到,获得积分10
5秒前
Crazy完成签到 ,获得积分10
5秒前
科研通AI2S应助伏坎采纳,获得10
6秒前
7秒前
Melan发布了新的文献求助10
8秒前
wanci应助元始天尊采纳,获得30
8秒前
12秒前
13秒前
13秒前
木子发布了新的文献求助50
13秒前
乐乐应助daydreamammaking采纳,获得10
14秒前
多肉葡萄完成签到 ,获得积分10
14秒前
跳跃的清涟完成签到,获得积分10
16秒前
在水一方应助Llllll_1001采纳,获得10
16秒前
兆兆发布了新的文献求助10
17秒前
英俊的铭应助Melan采纳,获得10
17秒前
李某某完成签到,获得积分10
17秒前
yang完成签到,获得积分10
19秒前
suiyi完成签到,获得积分10
20秒前
幻心发布了新的文献求助10
20秒前
害怕的冷雪完成签到,获得积分20
20秒前
茹茹发布了新的文献求助10
21秒前
钟山发布了新的文献求助20
21秒前
23秒前
隐形曼青应助asdfg采纳,获得20
24秒前
luermei发布了新的文献求助10
26秒前
幻心完成签到,获得积分10
27秒前
活力的青枫完成签到 ,获得积分10
28秒前
28秒前
28秒前
FB完成签到,获得积分10
29秒前
mingpu应助小小杜采纳,获得10
30秒前
chuchu应助小小杜采纳,获得10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Examining the factors affecting users' payment intention of video knowledge products 200
Handbook of Laboratory Animal Science 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3698391
求助须知:如何正确求助?哪些是违规求助? 3249394
关于积分的说明 9863623
捐赠科研通 2960969
什么是DOI,文献DOI怎么找? 1623886
邀请新用户注册赠送积分活动 768851
科研通“疑难数据库(出版商)”最低求助积分说明 741910