神经形态工程学
记忆电阻器
霍奇金-赫胥黎模型
计算机科学
尖峰神经网络
生物系统
分叉
人工神经元
神经元
生物神经元模型
振荡(细胞信号)
人工神经网络
人工智能
拓扑(电路)
物理
化学
神经科学
电子工程
工程类
生物
非线性系统
电气工程
生物化学
量子力学
标识
DOI:10.1021/acs.jpclett.3c02562
摘要
Brain-inspired neuromorphic computing is currently being investigated for effective artificial intelligence (AI) systems. The development of artificial neurons and synapses is imperative to creating efficient computational biomimetic networks. Here we propose the minimal configuration of an effective iontronic spiking neuron based on a conical nanofluidic pore ionic diode. The conductance is composed of a Boltzmann open channel probability and a blocking inactivation function, forming the structure of a memristor. The presence of a negative resistance and the combination of activation-deactivation dynamics cause a Hopf bifurcation. Using the characteristic frequencies of small perturbation impedance spectroscopy, we discuss the conditions of spiking, in which the system enters a limit cycle oscillation. We arrive at the conclusion that an excitable neuron-like system can be made with a single active channel instead of the more complex combination of multiple channels that occurs in the Hodgkin-Huxley neuron model.
科研通智能强力驱动
Strongly Powered by AbleSci AI