材料科学
电磁屏蔽
电磁干扰
复合材料
电磁干扰
碳纳米管
多孔性
复合数
导电体
垂直的
MXenes公司
电磁辐射
纳米技术
电子工程
光学
几何学
数学
工程类
物理
作者
Wei Wang,Zilong Peng,Zhenping Ma,Lei Zhang,Xianzhen Wang,Ziming Xu,Yongbao Feng,Chenglong Liu,Dewei Liang,Qiulong Li
标识
DOI:10.1021/acsami.3c10599
摘要
Lightweight porous composite materials (PCMs) with outstanding electromagnetic interference (EMI) shielding performances are ideal for aerospace, artificial intelligence, military, and other fields. Herein, a three-dimensional Ti3C2Tx MXene/sodium alginate (SA)/carbon nanotubes (CNTs) (MSC) PCMs was prepared by a controlled directional freezing process. This method constructs a directionally ordered porous structure, which can make the incident electromagnetic waves reflect and scattered several times in the PCMs. The introduction of CNTs into the MSC PCMs can form three-dimensional conductive networks with MXene, thus improving the conductivity and further improving the electromagnetic shielding performance. Furthermore, the SA with abundant hydrogen bonding can strengthen the interlayer interaction between MXene and CNTs. Profiting from the controlled directional freezing and highly aligned porous structure, the MSC PCMs with 75 wt % CNTs exhibit ultrahigh conductivity of 1630 S m-1, an ultrahigh EMI shielding effectiveness of 48.0 dB in X-band for electromagnetic waves incident perpendicular to the hole growth direction, and compressive strength of 72.3 kPa. The as-prepared MSC PCMs show excellent EMI shielding and mechanical properties and have significant applications in the preparation of an entirely novel type of EMI shielding materials with an absorption-based mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI