备品备件
残余物
组分(热力学)
可靠性工程
预防性维护
状态维修
计算机科学
预测性维护
运筹学
工程类
数学优化
算法
运营管理
数学
热力学
物理
作者
Mohamed-Larbi Rebaiaia,Daoud Aït‐Kadi
标识
DOI:10.1080/00207543.2023.2280882
摘要
This paper aims to propose a Novel Condition-based maintenance (CBM) decision aid model for optimising the maintenance of complex multi-component systems. As the degradation level of each component is assumed to be independent and stochastic, it follows a specific probability distribution determined from historical data of experimental observations and inspection. The main objective is to optimise the total cost for providing maintenance actions and reducing the excess of spare parts usage. The decision support model consists of determining measurements on components with the aim of estimating the instant of time of removing predictively one or a group of components before they fail. The measurement model includes the mean residual lifetime (MRL) and some extensions developed for this purpose. For demonstrating the pertinency of the proposed model, we use a preventive maintenance strategy for one-component systems and a grouping/opportunistic maintenance for multi-component systems. Besides, a numerical comparative study performing these measurements is carried out using several examples and a case study from Electric energy distribution systems. The solution is illustrated as a decision-making optimal model for optimising the maintenance operations’ costs and the total number of spare parts. The numerical results and the comparison show the efficiency of the proposed approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI