A machine learning framework for remaining useful lifetime prediction of li-ion batteries using diverse neural networks

超参数 计算机科学 人工神经网络 过程(计算) 机器学习 人工智能 代表(政治) 领域(数学分析) 数学 政治学 政治 操作系统 数学分析 法学
作者
Junghwan Lee,Huanli Sun,Yongshan Liu,Xue Li
出处
期刊:Energy and AI [Elsevier]
卷期号:15: 100319-100319 被引量:12
标识
DOI:10.1016/j.egyai.2023.100319
摘要

Accurate prediction of the remaining useful life (RUL) of lithium-ion batteries (LIBs) is pivotal for enhancing their operational efficiency and safety in diverse applications. Beyond operational advantages, precise RUL predictions can also expedite advancements in cell design and fast-charging methodologies, thereby reducing cycle testing durations. Despite artificial neural networks (ANNs) showing promise in this domain, determining the best-fit architecture across varied datasets and optimization approaches remains challenging. This study introduces a machine learning framework for systematically evaluating multiple ANN architectures. Using only 30% of a training dataset derived from 124 LIBs subjected to various charging regimes, an extensive evaluation is conducted across 7 ANN architectures. Each architecture is optimized in terms of hyperparameters using this framework, a process that spans 145 days on an NVIDIA GeForce RTX 4090 GPU. By optimizing each model to its best configuration, a fair and standardized basis for comparing their RUL predictions is established. The research also examines the impact of different cycling windows on predictive accuracy. Using a stratified partitioning technique underscores the significance of consistent dataset representation across subsets. Significantly, using only the features derived from individual charge–discharge cycles, our top-performing model, based on data from just 40 cycles, achieves a mean absolute percentage error of 10.7%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助柳七采纳,获得10
刚刚
零零二完成签到 ,获得积分10
刚刚
韭菜盒子发布了新的文献求助10
1秒前
Maestro_S完成签到,获得积分0
1秒前
volzzz发布了新的文献求助10
1秒前
wgglegg完成签到,获得积分10
1秒前
科研通AI5应助小胖鱼采纳,获得10
1秒前
酷波er应助黄超采纳,获得10
1秒前
1秒前
大智若愚啊完成签到,获得积分20
1秒前
2秒前
2秒前
2秒前
彬彬发布了新的文献求助10
2秒前
健壮丹妗完成签到 ,获得积分10
2秒前
Orange应助铸一字错采纳,获得10
2秒前
2秒前
Accept应助阿烨采纳,获得10
4秒前
欧阳小枫发布了新的文献求助10
5秒前
6秒前
Heidi完成签到 ,获得积分10
6秒前
见雨鱼发布了新的文献求助10
6秒前
学术扛把子完成签到 ,获得积分10
6秒前
Lucas应助陈某某采纳,获得10
6秒前
尊敬的钥匙完成签到,获得积分10
7秒前
8秒前
8秒前
赘婿应助无情的白桃采纳,获得10
8秒前
习习应助zhu96114748采纳,获得10
9秒前
英姑应助韭菜盒子采纳,获得10
9秒前
jbzmm完成签到 ,获得积分10
9秒前
36456657应助虚安采纳,获得10
10秒前
张真狗完成签到,获得积分10
10秒前
zz完成签到,获得积分10
10秒前
深情安青应助xxx采纳,获得10
10秒前
10秒前
yqf完成签到,获得积分10
11秒前
MADKAI发布了新的文献求助10
11秒前
乐乐应助燕尔蓝采纳,获得10
12秒前
JamesPei应助柔弱煎饼采纳,获得30
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740