A machine learning framework for remaining useful lifetime prediction of li-ion batteries using diverse neural networks

超参数 计算机科学 人工神经网络 过程(计算) 机器学习 人工智能 代表(政治) 领域(数学分析) 数学 政治学 政治 操作系统 数学分析 法学
作者
Junghwan Lee,Huanli Sun,Yongshan Liu,Xue Li
出处
期刊:Energy and AI [Elsevier]
卷期号:15: 100319-100319 被引量:12
标识
DOI:10.1016/j.egyai.2023.100319
摘要

Accurate prediction of the remaining useful life (RUL) of lithium-ion batteries (LIBs) is pivotal for enhancing their operational efficiency and safety in diverse applications. Beyond operational advantages, precise RUL predictions can also expedite advancements in cell design and fast-charging methodologies, thereby reducing cycle testing durations. Despite artificial neural networks (ANNs) showing promise in this domain, determining the best-fit architecture across varied datasets and optimization approaches remains challenging. This study introduces a machine learning framework for systematically evaluating multiple ANN architectures. Using only 30% of a training dataset derived from 124 LIBs subjected to various charging regimes, an extensive evaluation is conducted across 7 ANN architectures. Each architecture is optimized in terms of hyperparameters using this framework, a process that spans 145 days on an NVIDIA GeForce RTX 4090 GPU. By optimizing each model to its best configuration, a fair and standardized basis for comparing their RUL predictions is established. The research also examines the impact of different cycling windows on predictive accuracy. Using a stratified partitioning technique underscores the significance of consistent dataset representation across subsets. Significantly, using only the features derived from individual charge–discharge cycles, our top-performing model, based on data from just 40 cycles, achieves a mean absolute percentage error of 10.7%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
3秒前
4秒前
4秒前
zy发布了新的文献求助10
7秒前
7秒前
fjuuu发布了新的文献求助10
8秒前
dktrrrr发布了新的文献求助10
8秒前
海北完成签到 ,获得积分10
10秒前
miles发布了新的文献求助10
11秒前
良辰应助优雅的纸鹤采纳,获得10
13秒前
从容的元绿完成签到,获得积分10
17秒前
18秒前
Barton完成签到,获得积分10
18秒前
领导范儿应助zhang采纳,获得10
19秒前
fjuuu完成签到,获得积分10
21秒前
24秒前
努力毕业的瓜完成签到,获得积分10
25秒前
28秒前
ZMT230627关注了科研通微信公众号
28秒前
hanqing完成签到,获得积分20
30秒前
霁星河发布了新的文献求助10
30秒前
30秒前
朴实山兰发布了新的文献求助10
32秒前
32秒前
今后应助ZZZ采纳,获得30
32秒前
hanqing发布了新的文献求助10
33秒前
囡囡发布了新的文献求助10
33秒前
周洋完成签到,获得积分10
34秒前
一一发布了新的文献求助30
34秒前
无花果应助瓜瓜采纳,获得10
34秒前
jxx发布了新的文献求助10
35秒前
简奥斯汀完成签到 ,获得积分10
37秒前
37秒前
完美世界应助祁九采纳,获得10
37秒前
38秒前
42秒前
科研通AI2S应助多年以后采纳,获得10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309946
求助须知:如何正确求助?哪些是违规求助? 2943074
关于积分的说明 8512532
捐赠科研通 2618172
什么是DOI,文献DOI怎么找? 1430892
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490