Fast Matrix-Free Methods for Model-Based Personalized Synthetic MR Imaging

计算机科学 人工智能 基质(化学分析) 算法 模式识别(心理学) 数据挖掘 复合材料 材料科学
作者
Subrata Pal,Somak Dutta,Ranjan Maitra
出处
期刊:Journal of Computational and Graphical Statistics [Taylor & Francis]
卷期号:: 1-9
标识
DOI:10.1080/10618600.2023.2284208
摘要

Synthetic Magnetic Resonance (MR) imaging predicts images at new design parameter settings from a few observed MR scans. Model-based methods, that use both the physical and statistical properties underlying the MR signal and its acquisition, can predict images at any setting from as few as three scans, allowing it to be used in individualized patient- and anatomy-specific contexts. However, the estimation problem in model-based synthetic MR imaging is ill-posed and so regularization, in the form of correlated Gaussian markov random fields, is imposed on the voxel-wise spin-lattice relaxation time, spin-spin relaxation time and the proton density underlying the MR image. We develop theoretically sound but computationally practical matrix-free estimation methods for synthetic MR imaging. Our evaluations demonstrate superior performance of our methods in currently-used clinical settings when compared to existing model-based and deep learning methods. Moreover, unlike deep learning approaches, our fast methodology can synthesize needed images during patient visits, with good estimation and prediction accuracy and consistency. An added strength of our model-based approach, also developed and illustrated here, is the accurate estimation of standard errors of regional contrasts in the synthesized images. A R package symr implements our methodology. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Foxy完成签到,获得积分10
1秒前
小二郎应助大魁采纳,获得10
1秒前
emberflow完成签到,获得积分10
2秒前
不攻自破完成签到,获得积分10
2秒前
香蕉觅云应助小汤采纳,获得10
2秒前
2秒前
科目三应助FuuKa采纳,获得10
3秒前
Eeeee完成签到,获得积分10
3秒前
4秒前
4秒前
柠萌完成签到,获得积分10
4秒前
moxisi完成签到,获得积分10
4秒前
小马甲应助西大门官人采纳,获得10
4秒前
英俊的铭应助细腻的荟采纳,获得10
4秒前
小王发布了新的文献求助10
5秒前
Anna发布了新的文献求助10
5秒前
dong发布了新的文献求助30
5秒前
乔巴发布了新的文献求助10
6秒前
Ricardo完成签到,获得积分10
7秒前
今后应助文静醉易采纳,获得10
7秒前
QQ发布了新的文献求助30
7秒前
sci梦完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
不爱吃香菜完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
11秒前
11秒前
11秒前
lyt完成签到,获得积分10
12秒前
12秒前
小汤发布了新的文献求助10
12秒前
13秒前
义气的元柏完成签到 ,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951641
求助须知:如何正确求助?哪些是违规求助? 3497078
关于积分的说明 11085803
捐赠科研通 3227504
什么是DOI,文献DOI怎么找? 1784450
邀请新用户注册赠送积分活动 868519
科研通“疑难数据库(出版商)”最低求助积分说明 801154