结晶度
材料科学
阴极
电化学
化学工程
阳极
电极
石墨
锂(药物)
共价有机骨架
复合材料
物理化学
工程类
内分泌学
化学
医学
多孔性
作者
Kamran Amin,Warisha Mehmood,Jianqi Zhang,Sadia Ahmed,Lijuan Mao,Chuanfu Li,Binbin Zhang,Zhixiang Wei
标识
DOI:10.1021/acsami.3c11998
摘要
A benzoquinone-embedded aza-fused covalent organic framework (BQ COF) with the maximum loading of redox-active units per molecule was employed as a cathode for lithium-ion batteries (LIBs) to achieve high energy and power densities. The synthesis was optimized to obtain high crystallinity and improved electrochemical performance. Synthesis at moderate temperature followed by a solid-state reaction was found to be particularly useful for achieving good crystallinity and the activation of the COF. When used as a cathode for LIBs, very high discharge capacities of 513, 365, and 234 mAh g-1 were obtained at 0.1C, 1C, and 10C, respectively, showing a remarkable rate performance. More than 70% of the initial capacity was retained after 1000 cycles when the cathode was investigated for cyclic performance at 2.5C. We demonstrated that a straightforward heat treatment led to enhanced crystallinity, an optimized structure, and favorable morphology, resulting in enhanced electrode kinetics and an improved overall electrochemical behavior. A comparative study was conducted involving an aza-fused COF lacking carbonyl groups (TAB COF) and a small molecule containing phenazine and carbonyl (3BQ), providing useful insights into new material design. A full cell was assembled with graphite as the anode to assess the commercial feasibility of BQ COF, and a discharge capacity of 240 mAh g-1 was obtained at 0.5C. Furthermore, a pouch-type cell with a high discharge capacity and an excellent rate performance was assembled, demonstrating the practical applicability of our designed cathode. Considering the entire mass of the working electrode, a specific energy density of 492 Wh kg-1 and a power density of 492 W kg-1 were achieved at the high current density of 1C, which are comparable to those of commercially available cathodes. These results highlight the promise of organic electrode materials for next-generation lithium-ion batteries. Furthermore, this study provides a systematic approach for simultaneously designing organic materials with high power and energy densities.
科研通智能强力驱动
Strongly Powered by AbleSci AI