A Super-Resolution Diffusion Model for Recovering Bone Microstructure from CT Images

基本事实 尸体痉挛 组内相关 医学 皮尔逊积矩相关系数 图像质量 核医学 人工智能 图像分辨率 尸体 再现性 放射科 计算机科学 图像(数学) 统计 数学 外科
作者
Trevor Chan,Chamith S. Rajapakse
出处
期刊:Radiology [Radiological Society of North America]
卷期号:5 (6) 被引量:2
标识
DOI:10.1148/ryai.220251
摘要

Purpose To use a diffusion-based deep learning model to recover bone microstructure from low-resolution images of the proximal femur, a common site of traumatic osteoporotic fractures. Materials and Methods Training and testing data in this retrospective study consisted of high-resolution cadaveric micro-CT scans (n = 26), which served as ground truth. The images were downsampled prior to use for model training. The model was used to increase spatial resolution in these low-resolution images threefold, from 0.72 mm to 0.24 mm, sufficient to visualize bone microstructure. Model performance was validated using microstructural metrics and finite element simulation–derived stiffness of trabecular regions. Performance was also evaluated across a handful of image quality assessment metrics. Correlations between model performance and ground truth were assessed using intraclass correlation coefficients (ICCs) and Pearson correlation coefficients. Results Compared with popular deep learning baselines, the proposed model exhibited greater accuracy (mean ICC of proposed model, 0.92 vs ICC of next best method, 0.83) and lower bias (mean difference in means, 3.80% vs 10.00%, respectively) across the physiologic metrics. Two gradient-based image quality metrics strongly correlated with accuracy across structural and mechanical criteria (r > 0.89). Conclusion The proposed method may enable accurate measurements of bone structure and strength with a radiation dose on par with current clinical imaging protocols, improving the viability of clinical CT for assessing bone health. Keywords: CT, Image Postprocessing, Skeletal-Appendicular, Long Bones, Radiation Effects, Quantification, Prognosis, Semisupervised Learning Online supplemental material is available for this article. © RSNA, 2023
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖幻桃发布了新的文献求助10
1秒前
Akim应助Yan采纳,获得10
1秒前
乐乐应助研友_LJGoXn采纳,获得10
3秒前
_Yushan发布了新的文献求助10
3秒前
徐徐发布了新的文献求助10
3秒前
小马甲应助hui采纳,获得10
5秒前
Dxy-TOFA完成签到,获得积分10
5秒前
8秒前
gyf完成签到,获得积分10
9秒前
时尚的菠萝完成签到,获得积分10
9秒前
9秒前
12秒前
Deerlu完成签到,获得积分10
12秒前
Cyndilovetodrink完成签到,获得积分10
15秒前
李健的小迷弟应助Marilyn采纳,获得10
16秒前
17秒前
星辰大海应助Ran采纳,获得10
17秒前
轻松的剑发布了新的文献求助30
18秒前
或无情完成签到 ,获得积分10
20秒前
21秒前
mochi发布了新的文献求助10
22秒前
22秒前
fang完成签到 ,获得积分10
25秒前
高大鸭子完成签到 ,获得积分10
26秒前
AmbitionY完成签到,获得积分10
26秒前
orixero应助dh采纳,获得10
27秒前
上官若男应助棋士采纳,获得10
27秒前
小圆不头大完成签到,获得积分10
28秒前
风魂剑主发布了新的文献求助10
28秒前
29秒前
29秒前
leslie完成签到 ,获得积分10
30秒前
安详的惜梦完成签到 ,获得积分10
32秒前
一川烟叶完成签到,获得积分10
32秒前
Hello应助_Yushan采纳,获得10
32秒前
凡凡fan发布了新的文献求助10
33秒前
卑微的学牛马完成签到,获得积分10
34秒前
35秒前
37秒前
Hello应助美丽的凌蝶采纳,获得10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951021
求助须知:如何正确求助?哪些是违规求助? 3496420
关于积分的说明 11081962
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784010
邀请新用户注册赠送积分活动 868130
科研通“疑难数据库(出版商)”最低求助积分说明 801003