异质结
光催化
材料科学
催化作用
三元运算
八面体
热液循环
化学工程
吸附
无机化学
化学
结晶学
物理化学
晶体结构
有机化学
光电子学
计算机科学
工程类
程序设计语言
作者
Yaxin Ru,Yajie Chen,Xinyan Yu,Qiuyu Zhang,Yuejia Yin,Guohui Tian
标识
DOI:10.1016/j.cej.2023.146158
摘要
Hollow heterostructured catalysts have been widely investigated and applied in photocatalytic organic reactions. However, achieving hybrid catalysts with optimized hollow structure and controllable components is still a challenge. Herein, Cu-BTC@CuS@CeO2 ternary heterostructure hollow octahedrons were designed and prepared using a copper-based metal–organic framework (Cu-BTC) as both copper source and template. A thin CeO2 nanolayer was first formed and covered on the prepared Cu-BTC octahedron surface through a hydrothermal process. In the meanwhile, the Cu-BTC octahedrons were controllably etched in this hydrothermal process, leading to the formation of Cu-BTC@CeO2 hollow octahedron. The following sulfidation reaction produced Cu-BTC@CuS@CeO2 double p-n heterojunction hollow octahedrons. Benefiting from the novel hollow octahedron double p-n heterojunctions, excellent visible-near infrared light absorption, and fast charge transfer and separation, the obtained Cu-BTC@CuS@CeO2 hollow octahedron hybrid catalyst exhibited a significantly higher photocatalytic activity toward the oxidative coupling of amines to imines at room temperature under visible-near infrared light irradiation compared to the control single component catalysts (Cu-BTC, CeO2, and CuS) and binary hybrid catalysts (Cu-BTC@CeO2, Cu-BTC@CuS, and CuS@CeO2). The enhanced charge transfer at the double p-n heterojunction was discussed. Meanwhile, the photocatalytic oxidation products and reaction mechanism were investigated by surface-enhanced Raman spectroscopy, gas chromatography-mass spectrometry, and pyridine adsorption FT-IR spectroscopy. This work presents a promising strategy for the design of multi-component hollow heterostructure catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI