Mesoporous Nano-Badminton with Asymmetric Mass Distribution: How Nanoscale Architecture Affects the Blood Flow Dynamics

纳米颗粒 纳米技术 化学 杰纳斯 纳米材料 纳米载体 介孔材料 纳米医学 动力学(音乐) 材料科学 物理 声学 生物化学 催化作用
作者
Tiancong Zhao,Runfeng Lin,Borui Xu,Minchao Liu,Liang Chen,Fan Zhang,Yongfeng Mei,Xiaomin Li,Dongyuan Zhao
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (39): 21454-21464 被引量:24
标识
DOI:10.1021/jacs.3c07097
摘要

While the nanobio interaction is crucial in determining nanoparticles' in vivo fate, a previous work on investigating nanoparticles' interaction with biological barriers is mainly carried out in a static state. Nanoparticles' fluid dynamics that share non-negligible impacts on their frequency of encountering biological hosts, however, is seldom given attention. Herein, inspired by badmintons' unique aerodynamics, badminton architecture Fe3O4&mPDA (Fe3O4 = magnetite nanoparticle and mPDA = mesoporous polydopamine) Janus nanoparticles have successfully been synthesized based on a steric-induced anisotropic assembly strategy. Due to the "head" Fe3O4 having much larger density than the mPDA "cone", it shows an asymmetric mass distribution, analogous to real badminton. Computational simulations show that nanobadmintons have a stable fluid posture of mPDA cone facing forward, which is opposite to that for the real badminton. The force analysis demonstrates that the badminton-like morphology and mass distribution endow the nanoparticles with a balanced motion around this posture, making its movement in fluid stable. Compared to conventional spherical Fe3O4@mPDA nanoparticles, the Janus nanoparticles with an asymmetric mass distribution have straighter blood flow trails and ∼50% reduced blood vessel wall encountering frequency, thus providing doubled blood half-life and ∼15% lower organ uptakes. This work provides novel methodology for the fabrication of unique nanomaterials, and the correlations between nanoparticle architectures, biofluid dynamics, organ uptake, and blood circulation time are successfully established, providing essential guidance for designing future nanocarriers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Rivarez完成签到,获得积分10
1秒前
1秒前
白斯特发布了新的文献求助10
2秒前
2秒前
coco发布了新的文献求助10
2秒前
3秒前
0001发布了新的文献求助10
3秒前
江江发布了新的文献求助10
4秒前
hhh发布了新的文献求助30
4秒前
4秒前
摸耳朵完成签到,获得积分10
5秒前
5秒前
wei-zeng完成签到,获得积分10
5秒前
科研通AI6.1应助李盛男采纳,获得10
6秒前
金岁岁完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
鑫酱完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
立志天天看文献完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
coco完成签到,获得积分10
8秒前
刘杭发布了新的文献求助10
8秒前
11111发布了新的文献求助10
9秒前
董冬冬发布了新的文献求助10
9秒前
9秒前
疯狂小妈完成签到,获得积分10
9秒前
wei-zeng发布了新的文献求助10
9秒前
顾矜应助0001采纳,获得10
9秒前
11秒前
Jane_2022完成签到,获得积分10
11秒前
hn发布了新的文献求助10
11秒前
天天快乐应助发的不太好采纳,获得10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751807
求助须知:如何正确求助?哪些是违规求助? 5471044
关于积分的说明 15371853
捐赠科研通 4890961
什么是DOI,文献DOI怎么找? 2630110
邀请新用户注册赠送积分活动 1578321
关于科研通互助平台的介绍 1534305