Mesoporous Nano-Badminton with Asymmetric Mass Distribution: How Nanoscale Architecture Affects the Blood Flow Dynamics

纳米颗粒 纳米技术 化学 杰纳斯 纳米材料 纳米载体 介孔材料 纳米医学 动力学(音乐) 材料科学 物理 声学 生物化学 催化作用
作者
Tiancong Zhao,Runfeng Lin,Borui Xu,Minchao Liu,Liang Chen,Fan Zhang,Yongfeng Mei,Xiaomin Li,Dongyuan Zhao
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (39): 21454-21464 被引量:24
标识
DOI:10.1021/jacs.3c07097
摘要

While the nanobio interaction is crucial in determining nanoparticles' in vivo fate, a previous work on investigating nanoparticles' interaction with biological barriers is mainly carried out in a static state. Nanoparticles' fluid dynamics that share non-negligible impacts on their frequency of encountering biological hosts, however, is seldom given attention. Herein, inspired by badmintons' unique aerodynamics, badminton architecture Fe3O4&mPDA (Fe3O4 = magnetite nanoparticle and mPDA = mesoporous polydopamine) Janus nanoparticles have successfully been synthesized based on a steric-induced anisotropic assembly strategy. Due to the "head" Fe3O4 having much larger density than the mPDA "cone", it shows an asymmetric mass distribution, analogous to real badminton. Computational simulations show that nanobadmintons have a stable fluid posture of mPDA cone facing forward, which is opposite to that for the real badminton. The force analysis demonstrates that the badminton-like morphology and mass distribution endow the nanoparticles with a balanced motion around this posture, making its movement in fluid stable. Compared to conventional spherical Fe3O4@mPDA nanoparticles, the Janus nanoparticles with an asymmetric mass distribution have straighter blood flow trails and ∼50% reduced blood vessel wall encountering frequency, thus providing doubled blood half-life and ∼15% lower organ uptakes. This work provides novel methodology for the fabrication of unique nanomaterials, and the correlations between nanoparticle architectures, biofluid dynamics, organ uptake, and blood circulation time are successfully established, providing essential guidance for designing future nanocarriers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zenzi完成签到,获得积分20
1秒前
小雨完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
1an完成签到,获得积分10
3秒前
Nancy发布了新的文献求助10
3秒前
青青松树枝完成签到,获得积分10
3秒前
瘦瘦发布了新的文献求助20
3秒前
汉堡包应助不医人采纳,获得10
4秒前
小雨发布了新的文献求助10
5秒前
爆米花应助Steven采纳,获得10
5秒前
5秒前
newnew完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
ding应助磐xst采纳,获得10
9秒前
原野完成签到,获得积分10
9秒前
科研通AI6应助Nancy采纳,获得10
9秒前
9秒前
huilin发布了新的文献求助10
9秒前
10秒前
niNe3YUE应助薄荷采纳,获得10
10秒前
10秒前
何木萧完成签到,获得积分10
10秒前
丫丫完成签到,获得积分10
12秒前
Ava应助缥缈傥采纳,获得10
12秒前
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
huilin完成签到,获得积分10
15秒前
wenjing发布了新的文献求助10
16秒前
aaa发布了新的文献求助10
16秒前
是个哑巴完成签到,获得积分10
16秒前
Chicophy发布了新的文献求助10
16秒前
17秒前
洪山老狗发布了新的文献求助10
17秒前
18秒前
shengch0234完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002