亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Strain Engineering for Enhancing Carrier Mobility in MoTe2 Field‐Effect Transistors

电子迁移率 应变工程 材料科学 场效应晶体管 光电子学 晶体管 原子层沉积 基质(水族馆) 纳米技术 制作 图层(电子) 电气工程 电压 病理 工程类 地质学 替代医学 海洋学 医学
作者
Abde Mayeen Shafi,Md Gius Uddin,Xiaoqi Cui,Fida Ali,Faisal Ahmed,Mohamed Radwan,Susobhan Das,Naveed Mehmood,Zhipei Sun,Harri Lipsanen
出处
期刊:Advanced Science [Wiley]
卷期号:10 (29) 被引量:3
标识
DOI:10.1002/advs.202303437
摘要

Molybdenum ditelluride (MoTe2 ) exhibits immense potential in post-silicon electronics due to its bandgap comparable to silicon. Unlike other 2D materials, MoTe2 allows easy phase modulation and efficient carrier type control in electrical transport. However, its unstable nature and low-carrier mobility limit practical implementation in devices. Here, a deterministic method is proposed to improve the performance of MoTe2 devices by inducing local tensile strain through substrate engineering and encapsulation processes. The approach involves creating hole arrays in the substrate and using atomic layer deposition grown Al2 O3 as an additional back-gate dielectric layer on SiO2 . The MoTe2 channel is passivated with a thick layer of Al2 O3 post-fabrication. This structure significantly improves hole and electron mobilities in MoTe2 field-effect transistors (FETs), approaching theoretical limits. Hole mobility up to 130 cm-2 V-1 s-1 and electron mobility up to 160 cm-2 V-1 s-1 are achieved. Introducing local tensile strain through the hole array enhances electron mobility by up to 6 times compared to the unstrained devices. Remarkably, the devices exhibit metal-insulator transition in MoTe2 FETs, with a well-defined critical point. This study presents a novel technique to enhance carrier mobility in MoTe2 FETs, offering promising prospects for improving 2D material performance in electronic applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
海鸥别叫了完成签到 ,获得积分10
5秒前
菜菜蔡儿完成签到 ,获得积分10
7秒前
撕佳发布了新的文献求助10
7秒前
8秒前
LALA发布了新的文献求助10
14秒前
14秒前
小y要读书完成签到,获得积分10
16秒前
BowieHuang应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
Tanya47应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
17秒前
长情谷南发布了新的文献求助10
18秒前
Criminology34举报Einsamerxx求助涉嫌违规
18秒前
22秒前
潇淼完成签到 ,获得积分10
24秒前
习惯过了头完成签到 ,获得积分10
25秒前
简柠完成签到,获得积分10
25秒前
fangdonghai发布了新的文献求助10
26秒前
Sc完成签到 ,获得积分10
30秒前
wwdd完成签到,获得积分10
30秒前
Hello应助嘎哈采纳,获得10
31秒前
缥缈夏彤完成签到,获得积分10
38秒前
烂漫凡双发布了新的文献求助30
38秒前
Dliii完成签到 ,获得积分10
39秒前
40秒前
年年有余完成签到,获得积分10
42秒前
张天泽完成签到,获得积分10
43秒前
45秒前
45秒前
LALA完成签到,获得积分10
50秒前
无题完成签到,获得积分10
52秒前
1分钟前
jinsijia发布了新的文献求助10
1分钟前
丘比特应助fangdonghai采纳,获得10
1分钟前
1分钟前
1分钟前
尚秋月完成签到,获得积分10
1分钟前
LEETHEO完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664012
求助须知:如何正确求助?哪些是违规求助? 4856247
关于积分的说明 15106917
捐赠科研通 4822415
什么是DOI,文献DOI怎么找? 2581446
邀请新用户注册赠送积分活动 1535597
关于科研通互助平台的介绍 1493881