MMDTA: A Multimodal Deep Model for Drug-Target Affinity with a Hybrid Fusion Strategy

计算机科学 人工智能 杠杆(统计) 卷积神经网络 深度学习 机器学习 源代码 均方误差 数据挖掘 数学 统计 操作系统
作者
Kunhua Zhong,Meng‐Liang Wen,Fanfang Meng,Xin Li,Bei Jiang,Xin Zeng,Yi Li
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2878-2888 被引量:8
标识
DOI:10.1021/acs.jcim.3c00866
摘要

The prediction of the drug-target affinity (DTA) plays an important role in evaluating molecular druggability. Although deep learning-based models for DTA prediction have been extensively attempted, there are rare reports on multimodal models that leverage various fusion strategies to exploit heterogeneous information from multiple different modalities of drugs and targets. In this study, we proposed a multimodal deep model named MMDTA, which integrated the heterogeneous information from various modalities of drugs and targets using a hybrid fusion strategy to enhance DTA prediction. To achieve this, MMDTA first employed convolutional neural networks (CNNs) and graph convolutional networks (GCNs) to extract diverse heterogeneous information from the sequences and structures of drugs and targets. It then utilized a hybrid fusion strategy to combine and complement the extracted heterogeneous information, resulting in the fused modal information for predicting drug-target affinity through the fully connected (FC) layers. Experimental results demonstrated that MMDTA outperformed the competitive state-of-the-art deep learning models on the widely used benchmark data sets, particularly with a significantly improved key evaluation metric, Root Mean Square Error (RMSE). Furthermore, MMDTA exhibited excellent generalization and practical application performance on multiple different data sets. These findings highlighted MMDTA's accuracy and reliability in predicting the drug-target binding affinity. For researchers interested in the source data and code, they are accessible at http://github.com/dldxzx/MMDTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
zkylh应助科研通管家采纳,获得10
刚刚
Zeo应助科研通管家采纳,获得10
刚刚
WLL应助科研通管家采纳,获得20
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
神仙师姐应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
神仙师姐应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
NN完成签到,获得积分10
2秒前
Mor发布了新的文献求助10
3秒前
5秒前
用户12306发布了新的文献求助10
6秒前
呜啦啦啦发布了新的文献求助10
7秒前
大个应助中中会发光采纳,获得10
8秒前
zxy完成签到 ,获得积分10
10秒前
浅斟低唱发布了新的文献求助10
11秒前
11秒前
璐璐完成签到 ,获得积分10
12秒前
Owen应助xiaixax采纳,获得10
12秒前
felix发布了新的文献求助10
14秒前
wanci应助Mor采纳,获得10
15秒前
ml3029发布了新的文献求助10
16秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671828
求助须知:如何正确求助?哪些是违规求助? 3228411
关于积分的说明 9780397
捐赠科研通 2938926
什么是DOI,文献DOI怎么找? 1610272
邀请新用户注册赠送积分活动 760634
科研通“疑难数据库(出版商)”最低求助积分说明 736119