Dung beetle optimization algorithm based on quantum computing and multi-strategy fusion for solving engineering problems

群体智能 计算机科学 算法 数学优化 人口 粪甲虫 元优化 粒子群优化 局部最优 局部搜索(优化) 元启发式 趋同(经济学) 稳健性(进化) 数学 生态学 基因 社会学 人口学 经济 化学 生物 生物化学 金龟子科 经济增长
作者
Fang Zhu,Guoshuai Li,Hao Tang,Yingbo Li,Xvmeng Lv,Xi Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:236: 121219-121219 被引量:94
标识
DOI:10.1016/j.eswa.2023.121219
摘要

The Dung beetle optimization algorithm is a kind of group intelligence optimization algorithm proposed by Jiankai Xue in 2022, which has the characteristics of strong optimization-seeking ability and fast convergence but suffers from the defect of easily falling into local optimum at the late stage of optimization-seeking as other group intelligence optimization algorithms. To address this problem, this paper proposes a dung beetle search algorithm (QHDBO) based on quantum computing and a multi-strategy hybrid. The good point set strategy is used to initialize the initial population of dung beetles . That makes the initial population more evenly distributed, and reduces the likelihood of the algorithm falling into a local optimum solution. The convergence factor and dynamic balance between the number of Spawning and foraging dung beetles is proposed. That allows the algorithm to focus on the global search in the early stages and local exploration in the later stages. The quantum computing based t-distribution variation strategy is used to variate the optimal global solution, that prevents the algorithm from falling into a local optimum. To verify the performance of the QHDBO algorithm, this paper compares QHDBO with six other swarm intelligence algorithms through 37 test functions and practical engineering application problems. The experimental results show that the improved dung beetle optimization algorithm significantly improves convergence speed and optimization accuracy and has good robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助drywell采纳,获得10
1秒前
1秒前
shi0331完成签到,获得积分10
2秒前
酷波er应助William采纳,获得10
2秒前
3秒前
李爱国应助风中从丹采纳,获得10
3秒前
4秒前
4秒前
4秒前
5秒前
Canda发布了新的文献求助30
6秒前
wodel完成签到,获得积分10
6秒前
baobeikk发布了新的文献求助10
6秒前
科研通AI5应助尹容易采纳,获得10
6秒前
aldblm发布了新的文献求助10
7秒前
7秒前
8秒前
wodel发布了新的文献求助10
9秒前
9秒前
丽莫莫完成签到,获得积分10
9秒前
科研通AI5应助杨阳洋采纳,获得50
9秒前
冬瓜发布了新的文献求助10
9秒前
勤劳太阳完成签到,获得积分10
9秒前
9秒前
Owen应助lilala采纳,获得10
10秒前
莫西莫西发布了新的文献求助10
10秒前
11发布了新的文献求助10
10秒前
YYY完成签到,获得积分10
10秒前
10秒前
科研通AI5应助梁兆仪采纳,获得10
11秒前
共享精神应助陌路孤星采纳,获得10
11秒前
11秒前
12秒前
心平气和完成签到,获得积分10
12秒前
情怀应助孤岛采纳,获得10
12秒前
12秒前
13秒前
雪宝宝发布了新的文献求助10
13秒前
13秒前
忆之发布了新的文献求助10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652664
求助须知:如何正确求助?哪些是违规求助? 3216813
关于积分的说明 9713913
捐赠科研通 2924534
什么是DOI,文献DOI怎么找? 1601734
邀请新用户注册赠送积分活动 754514
科研通“疑难数据库(出版商)”最低求助积分说明 733099