Dung beetle optimization algorithm based on quantum computing and multi-strategy fusion for solving engineering problems

群体智能 计算机科学 算法 数学优化 人口 粪甲虫 元优化 粒子群优化 局部最优 局部搜索(优化) 元启发式 趋同(经济学) 稳健性(进化) 数学 生态学 基因 社会学 人口学 经济 化学 生物 生物化学 金龟子科 经济增长
作者
Fang Zhu,Guoshuai Li,Hao Tang,Yingbo Li,Xvmeng Lv,Xi Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:236: 121219-121219 被引量:104
标识
DOI:10.1016/j.eswa.2023.121219
摘要

The Dung beetle optimization algorithm is a kind of group intelligence optimization algorithm proposed by Jiankai Xue in 2022, which has the characteristics of strong optimization-seeking ability and fast convergence but suffers from the defect of easily falling into local optimum at the late stage of optimization-seeking as other group intelligence optimization algorithms. To address this problem, this paper proposes a dung beetle search algorithm (QHDBO) based on quantum computing and a multi-strategy hybrid. The good point set strategy is used to initialize the initial population of dung beetles . That makes the initial population more evenly distributed, and reduces the likelihood of the algorithm falling into a local optimum solution. The convergence factor and dynamic balance between the number of Spawning and foraging dung beetles is proposed. That allows the algorithm to focus on the global search in the early stages and local exploration in the later stages. The quantum computing based t-distribution variation strategy is used to variate the optimal global solution, that prevents the algorithm from falling into a local optimum. To verify the performance of the QHDBO algorithm, this paper compares QHDBO with six other swarm intelligence algorithms through 37 test functions and practical engineering application problems. The experimental results show that the improved dung beetle optimization algorithm significantly improves convergence speed and optimization accuracy and has good robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毕春宇发布了新的文献求助10
4秒前
一丁雨完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
9秒前
乐乐发布了新的文献求助10
9秒前
Vivianne发布了新的文献求助10
13秒前
大胆班完成签到,获得积分10
15秒前
乐乐完成签到,获得积分20
16秒前
16秒前
17秒前
Qing完成签到,获得积分10
17秒前
17秒前
Cupid完成签到,获得积分10
19秒前
20秒前
哈哈哈发布了新的文献求助30
20秒前
21秒前
张成协发布了新的文献求助10
22秒前
MMX完成签到,获得积分10
22秒前
zym999999发布了新的文献求助10
23秒前
云岫完成签到 ,获得积分10
23秒前
清秀的靖雁应助清玖采纳,获得10
23秒前
24秒前
25秒前
zhang完成签到,获得积分10
25秒前
29秒前
嵩嵩发布了新的文献求助10
30秒前
mmmmm完成签到,获得积分10
31秒前
诸道罡发布了新的文献求助10
32秒前
cxm666发布了新的文献求助10
32秒前
熊i发布了新的文献求助10
34秒前
NexusExplorer应助张成协采纳,获得10
34秒前
深情安青应助科研通管家采纳,获得10
34秒前
华仔应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
地表飞猪应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511