Image noise reduction by deep learning methods

椒盐噪音 暗框减法 计算机科学 噪音(视频) 人工智能 中值滤波器 降噪 图像噪声 高斯噪声 数值噪声 计算机视觉 梯度噪声 图像处理 图像(数学)
作者
Nurgul Uzakkyzy,Aisulu Ismailova,Talgatbek Ayazbaev,Zhanar Beldeubayeva,Shynar Kodanova,Balbupe Utenova,A. Satybaldiyeva,Mira Kaldarova
出处
期刊:International Journal of Power Electronics and Drive Systems 卷期号:13 (6): 6855-6855 被引量:6
标识
DOI:10.11591/ijece.v13i6.pp6855-6861
摘要

<span lang="EN-US">Image noise reduction is an important task in the field of computer vision and image processing. Traditional noise filtering methods may be limited by their ability to preserve image details. The purpose of this work is to study and apply deep learning methods to reduce noise in images. The main tasks of noise reduction in images are the removal of Gaussian noise, salt and pepper noise, noise of lines and stripes, noise caused by compression, and noise caused by equipment defects. In this paper, such noises as the removal of raindrops, dust, and traces of snow on the images were considered. In the work, complex patterns and high noise density were studied. A deep learning algorithm, such as the decomposition method with and without preprocessing, and their effectiveness in applying noise reduction are considered. It is expected that the results of the study will confirm the effectiveness of deep learning methods in reducing noise in images. This may lead to the development of more accurate and versatile image processing methods capable of preserving details and improving the visual quality of images in various fields, including medicine, photography, and video.</span>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
IrisRainbow发布了新的文献求助30
刚刚
1秒前
rous发布了新的文献求助10
1秒前
pency发布了新的文献求助10
2秒前
金平卢仙发布了新的文献求助10
2秒前
2秒前
NexusExplorer应助自觉的飞鸟采纳,获得30
2秒前
3秒前
所所应助wangyup采纳,获得10
3秒前
小蘑菇应助123采纳,获得10
4秒前
4秒前
4秒前
小鸣完成签到 ,获得积分10
4秒前
4秒前
6秒前
充电宝应助lll采纳,获得10
6秒前
冰火完成签到,获得积分10
6秒前
007发布了新的文献求助10
7秒前
宇航关注了科研通微信公众号
7秒前
内向的大白完成签到,获得积分10
8秒前
9秒前
科研通AI5应助顶顶小明采纳,获得10
9秒前
9秒前
隐形曼青应助Narsic采纳,获得10
9秒前
小王同学发布了新的文献求助10
10秒前
mini完成签到 ,获得积分10
10秒前
尛森发布了新的文献求助10
10秒前
J.发布了新的文献求助10
11秒前
彭于晏应助微笑的冰烟采纳,获得10
11秒前
12秒前
凌宇完成签到 ,获得积分10
12秒前
来日可追应助陈喵喵采纳,获得10
12秒前
研友_8oBpRZ完成签到,获得积分10
12秒前
12秒前
合适板栗完成签到,获得积分10
12秒前
13秒前
zhangzhisenn发布了新的文献求助10
13秒前
pency完成签到,获得积分10
13秒前
13秒前
脑洞疼应助xx采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 530
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3579406
求助须知:如何正确求助?哪些是违规求助? 3149344
关于积分的说明 9476879
捐赠科研通 2850607
什么是DOI,文献DOI怎么找? 1567271
邀请新用户注册赠送积分活动 734033
科研通“疑难数据库(出版商)”最低求助积分说明 720346