Efficient Multi-Agent Exploration with Mutual-Guided Actor-Critic

计算机科学 强化学习 先验与后验 分解 人工智能 约束(计算机辅助设计) 计算 数学优化 机器学习 算法 数学 生态学 哲学 几何学 认识论 生物
作者
Renlong Chen,Ying Tan
标识
DOI:10.1109/cec53210.2023.10254169
摘要

Multi-agent Reinforcement Learning (MARL) has drawn wide attention since a bunch of real-world complex scenes can be abstracted as Multi-Agent Systems. In order to solve the non-local training objective problem in shared reward environments, value-decomposition-based methods were proposed. Most of them introduce priori Individual-Global-Max (IGM) and value-decomposition constraints. Some attempts tune the value-decomposition constraints to achieve a better performance. However, IGM constraint, the fundamental assumption of value-decomposition methods, is adopted in most value-decomposition methods, which may lead to poor exploration in some situations. To deal with this problem, a novel algorithm called Mutual-guided Multi-agent Actor-Critic (MugAC) is proposed in this paper. MugAC, inspired by the core idea of evolutionary computation, imposes a joint-action pool, from which a joint-action is selected by the critic to interact with the environment and as a training objective of the actor. The training paradigm of MugAC provides an off-policy training for actor-critic, making the sample efficiency higher than that of traditional actor-critic methods in MARL. We evaluate our method against the state-of-the-art methods in StarCraft micromanagement. Experimental results show that MugAC outperforms other methods in various scenarios of widely adopted StarCraft Multi-Agent Challenge (SMAC).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
李李李发布了新的文献求助10
1秒前
1秒前
2秒前
starlx0813发布了新的文献求助10
3秒前
4秒前
纯真的盼柳完成签到,获得积分10
4秒前
温婉的凝丹完成签到,获得积分10
4秒前
5秒前
胡姬花发布了新的文献求助10
6秒前
6秒前
6秒前
蓦然发布了新的文献求助10
7秒前
7秒前
852应助喜悦的皮卡丘采纳,获得10
7秒前
7秒前
鸭爪爪发布了新的文献求助10
8秒前
9秒前
9秒前
Ankie发布了新的文献求助10
9秒前
Akira发布了新的文献求助10
9秒前
10秒前
lili完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
勤劳的斑马完成签到,获得积分10
13秒前
13秒前
完美世界应助Windycityguy采纳,获得10
13秒前
深情安青应助starlx0813采纳,获得10
14秒前
14秒前
义气丹雪应助细腻听白采纳,获得100
14秒前
Re发布了新的文献求助10
14秒前
科研通AI6.1应助热情千风采纳,获得10
15秒前
雨柏完成签到 ,获得积分10
16秒前
16秒前
17秒前
17秒前
19秒前
orixero应助年轻就要气盛采纳,获得10
20秒前
violet完成签到,获得积分20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848