Efficient Multi-Agent Exploration with Mutual-Guided Actor-Critic

计算机科学 强化学习 先验与后验 分解 人工智能 约束(计算机辅助设计) 计算 数学优化 机器学习 算法 数学 生态学 哲学 几何学 认识论 生物
作者
Renlong Chen,Ying Tan
标识
DOI:10.1109/cec53210.2023.10254169
摘要

Multi-agent Reinforcement Learning (MARL) has drawn wide attention since a bunch of real-world complex scenes can be abstracted as Multi-Agent Systems. In order to solve the non-local training objective problem in shared reward environments, value-decomposition-based methods were proposed. Most of them introduce priori Individual-Global-Max (IGM) and value-decomposition constraints. Some attempts tune the value-decomposition constraints to achieve a better performance. However, IGM constraint, the fundamental assumption of value-decomposition methods, is adopted in most value-decomposition methods, which may lead to poor exploration in some situations. To deal with this problem, a novel algorithm called Mutual-guided Multi-agent Actor-Critic (MugAC) is proposed in this paper. MugAC, inspired by the core idea of evolutionary computation, imposes a joint-action pool, from which a joint-action is selected by the critic to interact with the environment and as a training objective of the actor. The training paradigm of MugAC provides an off-policy training for actor-critic, making the sample efficiency higher than that of traditional actor-critic methods in MARL. We evaluate our method against the state-of-the-art methods in StarCraft micromanagement. Experimental results show that MugAC outperforms other methods in various scenarios of widely adopted StarCraft Multi-Agent Challenge (SMAC).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗_应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
温柔惜筠应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
salvage发布了新的文献求助10
2秒前
与我常在完成签到,获得积分20
3秒前
3秒前
研友_LNoAMn发布了新的文献求助20
3秒前
4秒前
Simon完成签到,获得积分10
4秒前
REBACK完成签到,获得积分20
4秒前
谨慎飞丹完成签到 ,获得积分10
5秒前
9秒前
大模型应助sunsaint采纳,获得10
9秒前
雪山飞龙发布了新的文献求助20
10秒前
研友_LNoAMn完成签到,获得积分10
11秒前
11秒前
爆米花应助wenjingjing114采纳,获得30
11秒前
12秒前
13秒前
14秒前
17秒前
研友_VZG7GZ应助义气的三德采纳,获得10
17秒前
赤侯完成签到,获得积分10
18秒前
quanjia关注了科研通微信公众号
18秒前
Darren发布了新的文献求助10
19秒前
Anna完成签到 ,获得积分10
19秒前
烟花应助熠烁采纳,获得10
20秒前
20秒前
淡然的浩宇完成签到,获得积分10
21秒前
纯情的谷云完成签到,获得积分10
22秒前
刚少kk完成签到,获得积分10
22秒前
matafeiyan完成签到 ,获得积分10
23秒前
23秒前
ding应助QYW采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137511
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7786944
捐赠科研通 2444783
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625770
版权声明 601023