Efficient Multi-Agent Exploration with Mutual-Guided Actor-Critic

计算机科学 强化学习 先验与后验 分解 人工智能 约束(计算机辅助设计) 计算 数学优化 机器学习 算法 数学 生态学 哲学 几何学 认识论 生物
作者
Renlong Chen,Ying Tan
标识
DOI:10.1109/cec53210.2023.10254169
摘要

Multi-agent Reinforcement Learning (MARL) has drawn wide attention since a bunch of real-world complex scenes can be abstracted as Multi-Agent Systems. In order to solve the non-local training objective problem in shared reward environments, value-decomposition-based methods were proposed. Most of them introduce priori Individual-Global-Max (IGM) and value-decomposition constraints. Some attempts tune the value-decomposition constraints to achieve a better performance. However, IGM constraint, the fundamental assumption of value-decomposition methods, is adopted in most value-decomposition methods, which may lead to poor exploration in some situations. To deal with this problem, a novel algorithm called Mutual-guided Multi-agent Actor-Critic (MugAC) is proposed in this paper. MugAC, inspired by the core idea of evolutionary computation, imposes a joint-action pool, from which a joint-action is selected by the critic to interact with the environment and as a training objective of the actor. The training paradigm of MugAC provides an off-policy training for actor-critic, making the sample efficiency higher than that of traditional actor-critic methods in MARL. We evaluate our method against the state-of-the-art methods in StarCraft micromanagement. Experimental results show that MugAC outperforms other methods in various scenarios of widely adopted StarCraft Multi-Agent Challenge (SMAC).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dali应助感动代荷采纳,获得10
刚刚
nanshou完成签到,获得积分10
2秒前
2秒前
锦慜发布了新的文献求助10
3秒前
3秒前
杨仔完成签到,获得积分10
3秒前
淡如水发布了新的文献求助10
4秒前
will发布了新的文献求助10
4秒前
赘婿应助冷傲迎梦采纳,获得10
4秒前
5秒前
YY发布了新的文献求助10
5秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
香蕉觅云应助琳666采纳,获得10
7秒前
zl12应助幽默尔蓝采纳,获得10
7秒前
zwy发布了新的文献求助10
7秒前
郭奕沛完成签到,获得积分10
7秒前
科研通AI2S应助震震采纳,获得10
9秒前
xs发布了新的文献求助10
10秒前
10秒前
芝士酱完成签到,获得积分10
11秒前
张11发布了新的文献求助10
11秒前
12秒前
邓佳鑫Alan应助ZZQ采纳,获得10
13秒前
14秒前
ZhouXB完成签到,获得积分10
15秒前
大宝剑2号完成签到 ,获得积分10
16秒前
李健应助锅锅采纳,获得10
16秒前
17秒前
17秒前
17秒前
小猪发布了新的文献求助10
17秒前
呆萌的早晨完成签到,获得积分10
17秒前
科研通AI6应助超级佳倍采纳,获得10
18秒前
20秒前
丘比特应助文官采纳,获得10
20秒前
小小应助will采纳,获得10
20秒前
希望天下0贩的0应助ss采纳,获得10
20秒前
Dr_Zhang完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646