Efficient Multi-Agent Exploration with Mutual-Guided Actor-Critic

计算机科学 强化学习 先验与后验 分解 人工智能 约束(计算机辅助设计) 计算 数学优化 机器学习 算法 数学 生态学 哲学 几何学 认识论 生物
作者
Renlong Chen,Ying Tan
标识
DOI:10.1109/cec53210.2023.10254169
摘要

Multi-agent Reinforcement Learning (MARL) has drawn wide attention since a bunch of real-world complex scenes can be abstracted as Multi-Agent Systems. In order to solve the non-local training objective problem in shared reward environments, value-decomposition-based methods were proposed. Most of them introduce priori Individual-Global-Max (IGM) and value-decomposition constraints. Some attempts tune the value-decomposition constraints to achieve a better performance. However, IGM constraint, the fundamental assumption of value-decomposition methods, is adopted in most value-decomposition methods, which may lead to poor exploration in some situations. To deal with this problem, a novel algorithm called Mutual-guided Multi-agent Actor-Critic (MugAC) is proposed in this paper. MugAC, inspired by the core idea of evolutionary computation, imposes a joint-action pool, from which a joint-action is selected by the critic to interact with the environment and as a training objective of the actor. The training paradigm of MugAC provides an off-policy training for actor-critic, making the sample efficiency higher than that of traditional actor-critic methods in MARL. We evaluate our method against the state-of-the-art methods in StarCraft micromanagement. Experimental results show that MugAC outperforms other methods in various scenarios of widely adopted StarCraft Multi-Agent Challenge (SMAC).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
繁荣的小白菜完成签到,获得积分10
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
昏睡的蟠桃应助shadow采纳,获得30
2秒前
枸杞子完成签到,获得积分10
3秒前
lokiuiw发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
5秒前
爱吃小鱼饼的西柚完成签到,获得积分10
5秒前
231完成签到 ,获得积分10
6秒前
香蕉觅云应助allglitters采纳,获得10
6秒前
镓氧锌钇铀应助枸杞子采纳,获得20
6秒前
嘿嘿应助白开水采纳,获得30
6秒前
咩咩子完成签到,获得积分10
7秒前
arizaki7应助缥缈的千柳采纳,获得10
8秒前
8秒前
明天再说完成签到,获得积分10
9秒前
9秒前
9秒前
qin发布了新的文献求助10
9秒前
cm完成签到,获得积分10
9秒前
10秒前
xuan关注了科研通微信公众号
10秒前
11秒前
xiaofeng完成签到,获得积分10
11秒前
huimin完成签到 ,获得积分20
12秒前
14秒前
14秒前
15秒前
情怀应助苗儿采纳,获得10
16秒前
16秒前
16秒前
man完成签到 ,获得积分10
16秒前
16秒前
善学以致用应助倪维采纳,获得10
16秒前
16秒前
小雪发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545545
求助须知:如何正确求助?哪些是违规求助? 4631578
关于积分的说明 14621138
捐赠科研通 4573196
什么是DOI,文献DOI怎么找? 2507417
邀请新用户注册赠送积分活动 1484163
关于科研通互助平台的介绍 1455383