材料科学
铝
阳极
合金
腐蚀
电池(电)
冶金
功率密度
功率(物理)
化学
电极
热力学
物理
物理化学
作者
Ruijie Zhao,Pan He,Fengyang Yu,Jianhong Yang,Zhenkun Sun,Wei Hu
标识
DOI:10.1016/j.est.2023.108985
摘要
The aluminum-air battery (AAB) is a promising type of power battery for electric vehicles, however, cost of high-purity aluminum and self-corrosion prevent its commercialization. In this work, aluminum alloys prepared from commercially pure aluminum are made as the anode of AAB. The discharge performances of the prepared anodes of Al-Mg-In, Al-Mg-Mn-In and Al-Mg-Mn-In-Sn alloys along with the commercially pure aluminum and 4N grade aluminum are carefully investigated. Results show that the anodes of Al-0.5Mg-0.2Mn-0.1In and Al-0.5Mg-0.2Mn-0.1In-0.1Sn exhibit largely improved discharge performances compared to the commercially pure aluminum and 4N grade aluminum. Although the maximum power density of Al-0.5Mg-0.2Mn-0.1In is only 88 mW cm−2 and 157 mW cm−2 at 25 °C and 60 °C, respectively, its corrosion resistance is much better than other alloys and the corresponding energy efficiencies are 26 % and 24 %. The Al-0.5Mg-0.2Mn-0.1In-0.1Sn alloy shows the highest discharge performance with the maximum power densities of 109 mW cm−2 and 204 mW cm−2 and the energy efficiencies of 28 % and 24 % at 25 °C and 60 °C, respectively. The excellent properties of these alloys can be attributed to the synergistic effects of In and Sn, and the improved corrosion resistance is due to the protective effect introduced by Mn.
科研通智能强力驱动
Strongly Powered by AbleSci AI