Environmental clusters defining breeding zones for tropical irrigated rice in Brazil

适应性 热带 栽培 选择(遗传算法) 聚类分析 环境变量 地理 农学 生物 生态学 数学 统计 计算机科学 机器学习
作者
Germano Costa‐Neto,David Henriques da Matta,Igor Kuivjogi Fernandes,L. F. Stone,Alexandre Bryan Heinemann
出处
期刊:Agronomy Journal [Wiley]
卷期号:116 (3): 931-955 被引量:4
标识
DOI:10.1002/agj2.21481
摘要

Abstract Geographic and seasonal effects are important in driving selection decisions in rice breeding research. Adopting new strategies for characterizing environmental–phenotype associations is critical to understanding these effects, and the outcomes of their study could reflect the benefits of developing locally adapted cultivars. This study aimed to characterize Brazil's tropical irrigated rice (IR) environment, Latin America's largest rice production system. We integrated unsupervised (K‐means clustering) and supervised (decision tree classifier) algorithms to identify environmental clusters (EC) based on historical yield data. The data set included 31 locations and 471 genotypes from 1982 to 2017. We used environmental features (EF), such as weather and geography, as input variables for our analysis, assuming the model as EC ∼ f (EF). Results indicate that the tropical IR production region can be divided into four primary breeding zones, with temperature emerging as a significant factor in the study area. After employing a linear mixed model analysis, we observed that the current relationship between genetics (G), environmental variation (E), and their interaction (G×E) in Brazil's tropical IR has a 1:6:2 ratio. However, when introducing our data‐driven model based on EC, we reduced this ratio to 1:5:1. Therefore, the selection for local adaptability across a large region became more reliable. Our approach successfully identified EC in Brazil's tropical production region of IR, providing valuable insights for defining breeding zones and identifying more productive and stable seed production fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Georges-09完成签到,获得积分10
刚刚
香蕉觅云应助yh采纳,获得10
刚刚
我爱科研完成签到 ,获得积分10
刚刚
1秒前
苹果平安完成签到,获得积分10
1秒前
1秒前
能干的cen发布了新的文献求助10
1秒前
2秒前
Jenny完成签到 ,获得积分10
2秒前
咸菜完成签到,获得积分10
2秒前
Chris完成签到,获得积分10
2秒前
wulijie完成签到,获得积分10
3秒前
3秒前
小刘完成签到,获得积分10
3秒前
无情的牛马完成签到,获得积分10
3秒前
3秒前
周老八完成签到,获得积分10
3秒前
4秒前
4秒前
SciGPT应助duoduo采纳,获得10
5秒前
司徒不二完成签到,获得积分0
5秒前
哎呀妈呀发布了新的文献求助10
5秒前
5秒前
NexusExplorer应助小萝卜睿睿采纳,获得10
5秒前
冰咖啡完成签到,获得积分10
5秒前
6秒前
6秒前
啊啊阿啊阿完成签到 ,获得积分10
6秒前
Nathan发布了新的文献求助10
7秒前
筱谭完成签到 ,获得积分10
7秒前
友好冥王星完成签到 ,获得积分10
7秒前
靓丽的安筠完成签到,获得积分20
7秒前
羽毛发布了新的文献求助10
8秒前
墨水完成签到 ,获得积分10
8秒前
乾乾发布了新的文献求助10
8秒前
WANGGE发布了新的文献求助10
9秒前
valorb完成签到,获得积分10
9秒前
溪鱼完成签到,获得积分10
9秒前
哒哒哒发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912