AI vs. Human Buyers: A Study of Alibaba’s Inventory Replenishment System

牛鞭效应 订单(交换) 分析 计算机科学 现存分类群 供应链 运筹学 业务 卓越运营 库存(枪支) 营销 人工智能 数据科学 供应链管理 工程类 生物 机械工程 进化生物学 财务
作者
Jiaxi Liu,Shu‐Yi Lin,Linwei Xin,Yidong Zhang
出处
期刊:INFORMS journal on applied analytics [Institute for Operations Research and the Management Sciences]
卷期号:53 (5): 372-387 被引量:4
标识
DOI:10.1287/inte.2023.1160
摘要

Inventory management is one of the most important components of Alibaba’s business. Traditionally, human buyers make replenishment decisions: although artificial intelligence (AI) algorithms make recommendations, human buyers can choose to ignore these recommendations and make their own decisions. The company has been exploring a new replenishment system in which algorithmic recommendations are final. The algorithms combine state-of-the-art deep reinforcement learning techniques with the framework of fictitious play. By learning the supplier’s behavior, we are able to address the important issues of lead time and fill rate on order quantity, which have been ignored in the extant literature of stochastic inventory control. We present evidence that our algorithms outperform human buyers in terms of reducing out-of-stock rates and inventory levels. More interestingly, we have seen additional benefits amid the pandemic. Over the last two years, cities in China partially and intermittently locked down to mitigate COVID-19 outbreaks. We have observed panic buying from human buyers during lockdowns, leading to the bullwhip effect. By contrast, panic buying and the bullwhip effect can be mitigated using our algorithms due to their ability to recognize changes in the supplier’s behavior during lockdowns. History: This paper has been accepted for the INFORMS Journal on Applied Analytics Special Issue—2022 Daniel H. Wagner Prize for Excellence in the Practice of Advanced Analytics and Operations Research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助楠楠采纳,获得10
1秒前
1秒前
yunna_ning完成签到,获得积分10
2秒前
华仔应助涉几尘采纳,获得30
3秒前
4秒前
lg完成签到,获得积分10
5秒前
小6s完成签到,获得积分10
5秒前
热心乌完成签到,获得积分0
8秒前
Chb完成签到,获得积分10
11秒前
标致的大侠完成签到 ,获得积分10
11秒前
释金松发布了新的文献求助10
12秒前
12秒前
CipherSage应助柠檬柚子晴采纳,获得10
13秒前
超级的鹅发布了新的文献求助10
14秒前
19554133922完成签到,获得积分10
14秒前
14秒前
无奈玫瑰完成签到,获得积分20
15秒前
阿杰不会飞完成签到,获得积分20
16秒前
17秒前
17秒前
17秒前
17秒前
xiaotiancheng发布了新的文献求助10
17秒前
赘婿应助Yuzuruyan采纳,获得10
20秒前
PAD完成签到,获得积分10
20秒前
20秒前
zhu发布了新的文献求助10
21秒前
超级的鹅完成签到,获得积分10
21秒前
青青子衿完成签到 ,获得积分10
22秒前
罐罐儿完成签到,获得积分0
23秒前
吃饭饭完成签到,获得积分10
24秒前
llly完成签到,获得积分10
26秒前
哆啦发布了新的文献求助10
26秒前
27秒前
NexusExplorer应助小熊软糖采纳,获得10
31秒前
31秒前
无限山晴完成签到,获得积分10
31秒前
31秒前
吃饭饭发布了新的文献求助10
31秒前
32秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462789
求助须知:如何正确求助?哪些是违规求助? 3056314
关于积分的说明 9051582
捐赠科研通 2745944
什么是DOI,文献DOI怎么找? 1506741
科研通“疑难数据库(出版商)”最低求助积分说明 696194
邀请新用户注册赠送积分活动 695740