Multiperson Activity Recognition and Tracking Based on Skeletal Keypoint Detection

跟踪(教育) 人工智能 计算机科学 模式识别(心理学) 计算机视觉 心理学 教育学
作者
Hai-Sheng Li,Jing-Yin Chen,Haiying Xia
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (5): 2279-2292
标识
DOI:10.1109/tai.2023.3318575
摘要

Currently, most action recognition networks have deep overall structures, large model parameters, and high requirements for computer hardware equipment. As a result, it is easy to overfit in the recognition process for too deep network layers. Furthermore, it is also difficult to extract features because of the video's interference information, such as illumination and occlusion. To solve the above problems, we propose a multiperson action recognition and tracking algorithm based on skeletal keypoint detection. First, the n network combining the improved dense convolutional network and part affinity field is used to extract the skeletal information points of the human body. Then, we present an improved DeepSort network for multiperson target tracking, which contains a Hungarian matching algorithm based on the generalized intersection over union and a pedestrian reidentification network combining GhostNet and feature pyramid network. Finally, we construct a deep neural network model to classify the extracted human skeletal information and realize action recognition. Experimental results show that the multiperson action recognition and tracking algorithm achieves an action recognition accuracy of 98%. In addition, the multitarget tracking accuracy of the proposed algorithm is improved by 4.2% on the MOT16 dataset. Compared with other common algorithms, the proposed algorithm can achieve high accuracy in detecting keypoints of the human body and improve the accuracy of multiperson action recognition with fewer parameters and complexity of operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懿笙完成签到,获得积分10
1秒前
Seven完成签到 ,获得积分10
1秒前
斯文问旋发布了新的文献求助10
1秒前
西辣蛋粉关注了科研通微信公众号
1秒前
1秒前
1秒前
共享精神应助Jin666采纳,获得10
2秒前
2秒前
2秒前
728发布了新的文献求助10
3秒前
123完成签到,获得积分10
3秒前
safeheart完成签到,获得积分10
3秒前
唠叨的曼易完成签到,获得积分10
3秒前
popvich完成签到,获得积分0
4秒前
缓慢夜阑发布了新的文献求助30
4秒前
wei_ahpu完成签到,获得积分10
4秒前
4秒前
Mcintosh完成签到,获得积分10
4秒前
陈嘉伟发布了新的文献求助10
4秒前
无花果应助倚栏听风采纳,获得10
4秒前
5秒前
michael发布了新的文献求助10
5秒前
lizh187发布了新的文献求助100
5秒前
吴开珍完成签到 ,获得积分10
5秒前
5秒前
华仔应助怎么说采纳,获得10
5秒前
Jasper应助呱呱采纳,获得10
5秒前
zyj应助烤布蕾采纳,获得10
5秒前
天天快乐应助烤布蕾采纳,获得10
5秒前
关琦完成签到,获得积分10
5秒前
zxy发布了新的文献求助10
6秒前
李健应助文静的铅笔采纳,获得10
6秒前
单纯面包发布了新的文献求助10
6秒前
6秒前
葛彬洁发布了新的文献求助10
7秒前
爱笑夜蕾发布了新的文献求助10
7秒前
chizhi完成签到,获得积分10
7秒前
8秒前
8秒前
琪琪完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017