Multiperson Activity Recognition and Tracking Based on Skeletal Keypoint Detection

跟踪(教育) 人工智能 计算机科学 模式识别(心理学) 计算机视觉 心理学 教育学
作者
Hai-Sheng Li,Jing-Yin Chen,Haiying Xia
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (5): 2279-2292
标识
DOI:10.1109/tai.2023.3318575
摘要

Currently, most action recognition networks have deep overall structures, large model parameters, and high requirements for computer hardware equipment. As a result, it is easy to overfit in the recognition process for too deep network layers. Furthermore, it is also difficult to extract features because of the video's interference information, such as illumination and occlusion. To solve the above problems, we propose a multiperson action recognition and tracking algorithm based on skeletal keypoint detection. First, the n network combining the improved dense convolutional network and part affinity field is used to extract the skeletal information points of the human body. Then, we present an improved DeepSort network for multiperson target tracking, which contains a Hungarian matching algorithm based on the generalized intersection over union and a pedestrian reidentification network combining GhostNet and feature pyramid network. Finally, we construct a deep neural network model to classify the extracted human skeletal information and realize action recognition. Experimental results show that the multiperson action recognition and tracking algorithm achieves an action recognition accuracy of 98%. In addition, the multitarget tracking accuracy of the proposed algorithm is improved by 4.2% on the MOT16 dataset. Compared with other common algorithms, the proposed algorithm can achieve high accuracy in detecting keypoints of the human body and improve the accuracy of multiperson action recognition with fewer parameters and complexity of operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZQD发布了新的文献求助10
刚刚
一点不懂发布了新的文献求助20
1秒前
今后应助yqhide采纳,获得10
1秒前
Y哦莫哦莫完成签到,获得积分10
1秒前
彭于晏应助隐形霸采纳,获得10
1秒前
薰衣草发布了新的文献求助10
2秒前
polki完成签到,获得积分10
2秒前
搜集达人应助百甲采纳,获得10
3秒前
sky发布了新的文献求助10
3秒前
浮游应助myc采纳,获得10
4秒前
4秒前
29发布了新的文献求助10
4秒前
4秒前
6秒前
捏个小雪团完成签到 ,获得积分10
7秒前
啦啦啦完成签到,获得积分10
8秒前
9秒前
yyygc完成签到,获得积分10
9秒前
9秒前
10秒前
搞怪灯泡完成签到,获得积分10
10秒前
顾矜应助三百一十四采纳,获得10
10秒前
11秒前
畅快的文龙完成签到,获得积分10
11秒前
温水完成签到 ,获得积分10
11秒前
11秒前
lanming发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
阿湫发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
CT民工完成签到,获得积分10
15秒前
16秒前
树袋熊和考拉完成签到,获得积分10
16秒前
完美世界应助myn1990采纳,获得10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109721
求助须知:如何正确求助?哪些是违规求助? 4318341
关于积分的说明 13454127
捐赠科研通 4148336
什么是DOI,文献DOI怎么找? 2273150
邀请新用户注册赠送积分活动 1275295
关于科研通互助平台的介绍 1213562