Multiperson Activity Recognition and Tracking Based on Skeletal Keypoint Detection

跟踪(教育) 人工智能 计算机科学 模式识别(心理学) 计算机视觉 心理学 教育学
作者
Hai-Sheng Li,Jing-Yin Chen,Haiying Xia
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (5): 2279-2292
标识
DOI:10.1109/tai.2023.3318575
摘要

Currently, most action recognition networks have deep overall structures, large model parameters, and high requirements for computer hardware equipment. As a result, it is easy to overfit in the recognition process for too deep network layers. Furthermore, it is also difficult to extract features because of the video's interference information, such as illumination and occlusion. To solve the above problems, we propose a multiperson action recognition and tracking algorithm based on skeletal keypoint detection. First, the n network combining the improved dense convolutional network and part affinity field is used to extract the skeletal information points of the human body. Then, we present an improved DeepSort network for multiperson target tracking, which contains a Hungarian matching algorithm based on the generalized intersection over union and a pedestrian reidentification network combining GhostNet and feature pyramid network. Finally, we construct a deep neural network model to classify the extracted human skeletal information and realize action recognition. Experimental results show that the multiperson action recognition and tracking algorithm achieves an action recognition accuracy of 98%. In addition, the multitarget tracking accuracy of the proposed algorithm is improved by 4.2% on the MOT16 dataset. Compared with other common algorithms, the proposed algorithm can achieve high accuracy in detecting keypoints of the human body and improve the accuracy of multiperson action recognition with fewer parameters and complexity of operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
4秒前
4秒前
充电宝应助ppat5012采纳,获得10
4秒前
5秒前
123发布了新的文献求助10
6秒前
Hello应助谷粱紫槐采纳,获得10
6秒前
Zeze完成签到,获得积分10
6秒前
机智猴完成签到,获得积分10
6秒前
6秒前
BowieHuang应助666采纳,获得10
7秒前
钱大大完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
阿黎发布了新的文献求助30
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
Maestro_S应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
Maestro_S应助科研通管家采纳,获得10
10秒前
10秒前
Maestro_S应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得30
10秒前
Owen应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752140
求助须知:如何正确求助?哪些是违规求助? 5472900
关于积分的说明 15373131
捐赠科研通 4891251
什么是DOI,文献DOI怎么找? 2630284
邀请新用户注册赠送积分活动 1578475
关于科研通互助平台的介绍 1534465