Multiperson Activity Recognition and Tracking Based on Skeletal Keypoint Detection

跟踪(教育) 人工智能 计算机科学 模式识别(心理学) 计算机视觉 心理学 教育学
作者
Hai-Sheng Li,Jing-Yin Chen,Haiying Xia
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (5): 2279-2292
标识
DOI:10.1109/tai.2023.3318575
摘要

Currently, most action recognition networks have deep overall structures, large model parameters, and high requirements for computer hardware equipment. As a result, it is easy to overfit in the recognition process for too deep network layers. Furthermore, it is also difficult to extract features because of the video's interference information, such as illumination and occlusion. To solve the above problems, we propose a multiperson action recognition and tracking algorithm based on skeletal keypoint detection. First, the n network combining the improved dense convolutional network and part affinity field is used to extract the skeletal information points of the human body. Then, we present an improved DeepSort network for multiperson target tracking, which contains a Hungarian matching algorithm based on the generalized intersection over union and a pedestrian reidentification network combining GhostNet and feature pyramid network. Finally, we construct a deep neural network model to classify the extracted human skeletal information and realize action recognition. Experimental results show that the multiperson action recognition and tracking algorithm achieves an action recognition accuracy of 98%. In addition, the multitarget tracking accuracy of the proposed algorithm is improved by 4.2% on the MOT16 dataset. Compared with other common algorithms, the proposed algorithm can achieve high accuracy in detecting keypoints of the human body and improve the accuracy of multiperson action recognition with fewer parameters and complexity of operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lang完成签到,获得积分10
1秒前
慕青应助不敢装睡采纳,获得30
2秒前
寒天帝完成签到,获得积分10
2秒前
2秒前
离枝发布了新的文献求助10
3秒前
azusa完成签到,获得积分10
3秒前
劳大完成签到 ,获得积分10
4秒前
4秒前
Orange应助石贝茜采纳,获得10
4秒前
战战发布了新的文献求助10
6秒前
游一发布了新的文献求助10
6秒前
6秒前
风雨中飘摇应助精明怜南采纳,获得50
7秒前
7秒前
wendy_1006完成签到 ,获得积分10
7秒前
7秒前
领导范儿应助Pauline采纳,获得10
8秒前
ssss完成签到,获得积分10
9秒前
10秒前
YO发布了新的文献求助10
10秒前
木心应助tuyoyo采纳,获得20
10秒前
微微发布了新的文献求助10
10秒前
斯文败类应助小杜在此采纳,获得10
11秒前
花生米完成签到,获得积分10
12秒前
13秒前
秋夏发布了新的文献求助10
13秒前
Theprisoners举报嘚嘚求助涉嫌违规
13秒前
ranranran完成签到,获得积分10
14秒前
jal发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
以前关注了科研通微信公众号
18秒前
感动的眼神完成签到,获得积分10
20秒前
李爱国应助hwezhu采纳,获得10
21秒前
21秒前
21秒前
漂亮采波发布了新的文献求助10
22秒前
吃饭去不去完成签到,获得积分10
22秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496