PhiUSIIL: A diverse security profile empowered phishing URL detection framework based on similarity index and incremental learning

网络钓鱼 计算机科学 相似性(几何) 索引(排版) 构造(python库) 情报检索 数据挖掘 万维网 人工智能 互联网 机器学习 图像(数学) 程序设计语言
作者
Arvind Prasad,Shalini Chandra
出处
期刊:Computers & Security [Elsevier]
卷期号:136: 103545-103545 被引量:12
标识
DOI:10.1016/j.cose.2023.103545
摘要

With the proliferation of the World Wide Web and the increasing sophistication of cyber threats, phishing attacks have emerged as a significant concern for individuals and organizations alike. Phishing attacks, commonly executed through deceptive URLs, aim to deceive users into divulging sensitive information, leading to financial loss, identity theft, or compromising sensitive data. It continues to pose a significant threat to individuals and organizations in today's digital landscape, necessitating the development of effective and efficient detection frameworks. This article presents PhiUSIIL, a Phishing URL detection framework based on Similarity Index and Incremental Learning. The similarity index helps effectively identify visual similarity-based attacks such as zero-width characters, homograph, punycode, homophone, bit squatting, and combosquatting attacks. The incremental learning approach allows the framework to continuously update its knowledge base with new data. Further, implementing diverse security profiles accommodates diverse security requirements of users or organizations. PhiUSIIL extracts URL features, downloads the webpage from URL to extract HTML features, and derives new features from existing information to construct a phishing URL dataset, named PhiUSIIL phishing URL dataset, encompassing 134850 legitimate and 100945 phishing URLs. The proposed phishing URL detection framework has extensively experimented with the PhiUSIIL phishing URL dataset. The constructed dataset helps to improve the detection accuracy when used during pre-training approach. PhiUSIIL achieved an accuracy of 99.24% when experimented with a fully incremental training approach and 99.79% when experimented with a pre-training approach. The experimental results show its effectiveness and ensure the framework remains effective and up-to-date against emerging and sophisticated phishing techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助zjh采纳,获得10
刚刚
顾矜应助Joy采纳,获得10
1秒前
苯二氮卓发布了新的文献求助10
2秒前
甜甜玫瑰应助plants采纳,获得10
3秒前
科研通AI2S应助耶耶采纳,获得10
4秒前
4秒前
SciGPT应助悦耳的语梦采纳,获得30
4秒前
追寻巨人发布了新的文献求助10
5秒前
Akim应助康康采纳,获得10
5秒前
LL完成签到,获得积分10
7秒前
最爱吃火锅完成签到,获得积分10
7秒前
买椟还珠发布了新的文献求助10
8秒前
Mavis完成签到 ,获得积分10
9秒前
折耳根完成签到 ,获得积分10
10秒前
天天快乐应助最爱吃火锅采纳,获得10
11秒前
ZXneuro完成签到,获得积分10
11秒前
HCLonely应助靓丽的安筠采纳,获得10
11秒前
樱偶猫完成签到 ,获得积分10
11秒前
魏某某完成签到 ,获得积分10
11秒前
12秒前
简单的元珊完成签到,获得积分10
13秒前
14秒前
1111完成签到 ,获得积分10
14秒前
14秒前
耶耶完成签到,获得积分10
16秒前
ll发布了新的文献求助10
16秒前
16秒前
孤僻完成签到,获得积分10
17秒前
嘉心糖给土豆土豆的求助进行了留言
17秒前
嗯哼发布了新的文献求助10
17秒前
17秒前
暴躁的嘉懿完成签到,获得积分10
18秒前
zjh发布了新的文献求助10
19秒前
19秒前
无情的聋五完成签到 ,获得积分10
19秒前
秋逢萍发布了新的文献求助30
19秒前
mhl11应助忧伤的书易采纳,获得10
19秒前
运医小刀完成签到 ,获得积分10
19秒前
华仔应助忧郁凌波采纳,获得10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
The Bourse of Babylon: market quotations in the astronomical diaries of Babylonia 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942271
关于积分的说明 8507774
捐赠科研通 2617189
什么是DOI,文献DOI怎么找? 1430004
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186