材料科学
复合材料
胶粘剂
接触角
表面粗糙度
表面能
复合数
X射线光电子能谱
傅里叶变换红外光谱
环氧树脂
韧性
图层(电子)
核磁共振
量子力学
物理
作者
Adem Can Uşak,Cevdet Kaynak
标识
DOI:10.1177/08927057231200009
摘要
The main purpose of this study was to observe the degree of the improvement on the film adhesive joining performance of Poly(phenylene sulfide)/Carbon Fiber (PPS/CF) thermoplastic composite laminates when their surfaces were treated by atmospheric plasma technique. For this purpose, plasma treated surfaces were compared with untreated and the traditional grit-blasted surfaces. Treated surfaces were characterized by various techniques including contact angle, surface energy, surface roughness, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. Then, joining performance of the PPS/CF composite samples bonded by an epoxy-based film adhesive was determined by using three different mechanical tests; single-lap shear strength, mode-I interlaminar fracture toughness energy, and drop-weight impact toughness. Grit-blasting surface treatment increased surface roughness of the specimens enormously (7 times more), leading to mechanical interlocking as the dominant bonding mechanism. Contrarily, plasma surface treatment resulted in formation of chemically reactive sites, thus dominant bonding mechanisms in the film adhesive joining were certain polar interactions and chemical bonding. Mechanical tests pointed out that compared to grit-blasting, plasma surface treatment resulted in considerably higher joint performance regarding interlaminar shear strength (35% more), interlaminar fracture toughness (67% more) and impact toughness (28% more), with the cohesive failure mode. Accordingly, it could be stated that traditional grit-blasting could be replaced with plasma surface treatment applied before film adhesive joining of PPS/CF composite parts in aircraft industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI