Surrogate-assisted expensive constrained Bi-objective optimization with highly heterogeneous evaluations

数学优化 计算机科学 水准点(测量) 约束(计算机辅助设计) 最优化问题 多目标优化 替代模型 还原(数学) 维数(图论) 约束优化 代表(政治) 算法 数学 政治 政治学 大地测量学 法学 纯数学 地理 几何学
作者
Yong Pang,Xiaonan Lai,Yitang Wang,Xiwang He,Shuai Zhang,Xueguan Song
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:83: 101401-101401 被引量:3
标识
DOI:10.1016/j.swevo.2023.101401
摘要

Expensive multiobjective optimization problem has been thoroughly studied in the past few years. However, one type of problem is often overlooked. Still, it is common in practice, whose partial target functions (objectives and constraints) are expensive that require approximations by surrogate models, while others have explicit formulas that can calculate immediately. To address this problem, a general representation is first defined as a highly heterogeneous optimization problem (HHOP) in this work. In terms of bi-objective constrained HHOP, an algorithm is proposed based on the Kriging surrogate model with a new exact 2-D expected hypervolume improvement (EHVI) calculation method and a new constraint handling approach considering both the expensive and inexpensive target functions. In EHVI calculation, the integral is only performed in the expensive objective dimension due to the deterministic of the inexpensive objective, resulting in the reduction of the time complexity and increase of the accuracy. Combining a multiobjective and a dominance-based constraint handling approaches, a new constraint handling strategy is proposed to deal with the constrained HHOP specifically. The effectiveness of the proposed EHVI calculation method and constraint handling strategy is verified by the benchmark comparison problems. whose results also indicate the superiority of the proposed algorithm compared with the other state-of-art algorithms. Furthermore, the proposed algorithm is implemented for a head sheave optimization problem to demonstrate its practicability in real-world problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzd12318发布了新的文献求助10
1秒前
1秒前
小宇要加油完成签到,获得积分10
2秒前
bkagyin应助haorui采纳,获得10
2秒前
卡夫卡完成签到,获得积分20
3秒前
luozhen完成签到,获得积分20
3秒前
wyw完成签到,获得积分10
3秒前
木木应助jlwang采纳,获得10
4秒前
4秒前
4秒前
tang完成签到,获得积分10
4秒前
chopin完成签到,获得积分10
5秒前
5秒前
Jian完成签到,获得积分10
5秒前
陈佩chenpei发布了新的文献求助10
5秒前
xdf完成签到,获得积分10
5秒前
wy.he应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
6秒前
CallitWYW应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
求学狗完成签到,获得积分10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
一叶扁舟完成签到,获得积分10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
洪荒少女应助科研通管家采纳,获得10
7秒前
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
yanice应助科研通管家采纳,获得10
7秒前
mhl11应助喝下午茶的狗采纳,获得20
10秒前
10秒前
小二郎应助橙子慢慢来采纳,获得10
10秒前
1234567完成签到,获得积分10
10秒前
研友_EZ1GJL发布了新的文献求助10
11秒前
hututu应助鲤鱼凛采纳,获得20
12秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327340
求助须知:如何正确求助?哪些是违规求助? 2957611
关于积分的说明 8586666
捐赠科研通 2635772
什么是DOI,文献DOI怎么找? 1442556
科研通“疑难数据库(出版商)”最低求助积分说明 668298
邀请新用户注册赠送积分活动 655358