Online interpretable dynamic prediction models for postoperative delirium after cardiac surgery under cardiopulmonary bypass developed based on machine learning algorithms: A retrospective cohort study

谵妄 接收机工作特性 医学 心脏外科 机器学习 人工神经网络 队列 体外循环 推导 人工智能 深度学习 计算机科学 重症监护医学 内科学 动脉
作者
Xiuxiu Zhao,Junlin Li,Xianhai Xie,Zhaojing Fang,Yue Feng,Yi Zhong,Chen Chen,Kaizong Huang,Chun Ge,Hongwei Shi,Yanna Si,Jianjun Zou
出处
期刊:Journal of Psychosomatic Research [Elsevier BV]
卷期号:176: 111553-111553 被引量:4
标识
DOI:10.1016/j.jpsychores.2023.111553
摘要

Postoperative delirium (POD) is strongly associated with poor early and long-term prognosis in cardiac surgery patients with cardiopulmonary bypass (CPB). This study aimed to develop dynamic prediction models for POD after cardiac surgery under CPB using machine learning (ML) algorithms. From July 2021 to June 2022, clinical data were collected from patients undergoing cardiac surgery under CPB at Nanjing First Hospital. A dataset from the same center (October 2022 to November 2022) was also used for temporal external validation. We used ML and deep learning to build models in the training set, optimized parameters in the test set, and finally validated the best model in the validation set. The SHapley Additive exPlanations (SHAP) method was introduced to explain the best models. Of the 885 patients enrolled, 221 (25.0%) developed POD. 22 (22.0%) of 100 validation cohort patients developed POD. The preoperative and postoperative artificial neural network (ANN) models exhibited optimal performance. The validation results demonstrated satisfactory predictive performance of the ANN model, with area under the receiver operator characteristic curve (AUROC) values of 0.776 and 0.684 for the preoperative and postoperative models, respectively. Based on the ANN algorithm, we constructed dynamic, highly accurate, and interpretable web risk calculators for POD. We successfully developed online interpretable dynamic ANN models as clinical decision aids to identify patients at high risk of POD before and after cardiac surgery to facilitate early intervention or care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYX发布了新的文献求助20
1秒前
66666发布了新的文献求助10
4秒前
科研通AI5应助外向宛菡采纳,获得10
5秒前
找寻四氢叶酸完成签到,获得积分10
5秒前
6秒前
Uoloaa关注了科研通微信公众号
6秒前
1x应助SYX采纳,获得20
6秒前
云山完成签到,获得积分10
7秒前
7秒前
8秒前
Hear发布了新的文献求助10
11秒前
所所应助xiao采纳,获得10
11秒前
昏睡的蟠桃应助jasper采纳,获得30
11秒前
小波发布了新的文献求助10
13秒前
科研通AI5应助RONG采纳,获得10
15秒前
15秒前
科研通AI5应助糯米糍采纳,获得10
16秒前
科研小民工应助程忆采纳,获得30
17秒前
Duke_ethan完成签到,获得积分10
17秒前
18秒前
19秒前
动漫大师发布了新的文献求助10
20秒前
20秒前
十一发布了新的文献求助10
23秒前
Hear完成签到,获得积分10
23秒前
Uoloaa发布了新的文献求助30
23秒前
科研菜鸡完成签到,获得积分10
24秒前
25秒前
25秒前
榕俊完成签到,获得积分10
27秒前
Lucas应助知鱼采纳,获得10
28秒前
所所应助科研通管家采纳,获得10
29秒前
29秒前
大个应助科研通管家采纳,获得10
29秒前
传奇3应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得20
29秒前
SciGPT应助科研通管家采纳,获得10
29秒前
我是老大应助科研通管家采纳,获得10
29秒前
29秒前
桐桐应助糯米糍采纳,获得10
30秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3708704
求助须知:如何正确求助?哪些是违规求助? 3256920
关于积分的说明 9902951
捐赠科研通 2969653
什么是DOI,文献DOI怎么找? 1628685
邀请新用户注册赠送积分活动 772329
科研通“疑难数据库(出版商)”最低求助积分说明 743753