Prediction of 5‐year survival in soft tissue leiomyosarcoma using a machine learning model algorithm

布里氏评分 逻辑回归 机器学习 接收机工作特性 医学 算法 人工智能 弹性网正则化 计算机科学 特征选择
作者
Pramod Kamalapathy,Marcos R. Gonzalez,Tom M. de Groot,Dipak B. Ramkumar,Kevin A. Raskin,Soheil Ashkani‐Esfahani,Santiago A. Lozano‐Calderón
出处
期刊:Journal of Surgical Oncology [Wiley]
卷期号:129 (3): 531-536 被引量:3
标识
DOI:10.1002/jso.27514
摘要

Abstract Background and Objectives Leiomyosarcoma (LMS) is associated with one of the poorest overall survivals among soft tissue sarcomas. We sought to develop and externally validate a model for 5‐year survival prediction in patients with appendicular or truncal LMS using machine learning algorithms. Methods The Surveillance, Epidemiology, and End Results (SEER) database was used for development and internal validation of the models; external validation was assessed using our institutional database. Five machine learning algorithms were developed and then tested on our institutional database. Area under the receiver operating characteristic curve (AUC) and Brier score were used to assess model performance. Results A total of 2209 patients from the SEER database and 81 patients from our tertiary institution were included. All models had excellent calibration with AUC 0.84−0.85 and Brier score 0.15−0.16. After assessing the performance indicators according to the TRIPOD model, we found that the Elastic‐Net Penalized Logistic Regression outperformed other models. The AUCs of the institutional data were 0.83 (imputed) and 0.85 (complete‐case analysis) with a Brier score of 0.16. Conclusion Our study successfully developed five machine learning algorithms to assess 5‐year survival in patients with LMS. The Elastic‐Net Penalized Logistic Regression retained performance upon external validation with an AUC of 0.85 and Brier score of 0.15.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chassie发布了新的文献求助30
1秒前
Naomi-yu发布了新的文献求助10
1秒前
西西发布了新的文献求助10
1秒前
伶俐的绿柳完成签到,获得积分10
2秒前
金嘉懿完成签到,获得积分10
3秒前
过时的访天完成签到,获得积分10
3秒前
JWKim完成签到,获得积分10
3秒前
4秒前
刻苦的皮卡丘完成签到,获得积分10
5秒前
5秒前
elephant51完成签到,获得积分10
9秒前
孙小猪发布了新的文献求助10
9秒前
Jasper应助hc采纳,获得10
10秒前
晚晴发布了新的文献求助10
10秒前
迷路冰安发布了新的文献求助10
10秒前
11秒前
梵星应助轻松的采枫采纳,获得20
11秒前
11秒前
chassie完成签到,获得积分20
12秒前
elephant51发布了新的文献求助10
14秒前
mslln发布了新的文献求助10
14秒前
saying发布了新的文献求助30
16秒前
深情安青应助Naomi-yu采纳,获得10
17秒前
18秒前
Aya完成签到,获得积分20
18秒前
研究僧完成签到,获得积分10
18秒前
kk应助追寻不平采纳,获得10
19秒前
newman完成签到,获得积分10
19秒前
20秒前
hc完成签到,获得积分10
20秒前
20秒前
李健应助星川采纳,获得10
21秒前
燕知南发布了新的文献求助10
22秒前
23秒前
Jasper应助春鸟采纳,获得10
23秒前
左丘秋尽发布了新的文献求助10
23秒前
Connie发布了新的文献求助30
23秒前
23秒前
轻松的采枫完成签到,获得积分10
24秒前
Jasper应助书生采纳,获得10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156157
求助须知:如何正确求助?哪些是违规求助? 2807647
关于积分的说明 7873898
捐赠科研通 2465881
什么是DOI,文献DOI怎么找? 1312484
科研通“疑难数据库(出版商)”最低求助积分说明 630109
版权声明 601905