摘要
Advanced Optical MaterialsEarly View 2302303 Research Article Near-Infrared Emission of Sm2+ in Oxynitrides Ying Lv, Corresponding Author Ying Lv [email protected] orcid.org/0000-0002-8917-4650 Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, College of Science, Nanchang Institute of Technology, Nanchang, 330099 China College of Materials, Xiamen University, Xiamen, 361005 China E-mail: [email protected]; [email protected]Search for more papers by this authorYunkai Li, Yunkai Li Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, College of Science, Nanchang Institute of Technology, Nanchang, 330099 ChinaSearch for more papers by this authorZhongyuan Li, Zhongyuan Li Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000 ChinaSearch for more papers by this authorRong-Jun Xie, Corresponding Author Rong-Jun Xie [email protected] College of Materials, Xiamen University, Xiamen, 361005 China E-mail: [email protected]; [email protected]Search for more papers by this author Ying Lv, Corresponding Author Ying Lv [email protected] orcid.org/0000-0002-8917-4650 Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, College of Science, Nanchang Institute of Technology, Nanchang, 330099 China College of Materials, Xiamen University, Xiamen, 361005 China E-mail: [email protected]; [email protected]Search for more papers by this authorYunkai Li, Yunkai Li Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, College of Science, Nanchang Institute of Technology, Nanchang, 330099 ChinaSearch for more papers by this authorZhongyuan Li, Zhongyuan Li Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000 ChinaSearch for more papers by this authorRong-Jun Xie, Corresponding Author Rong-Jun Xie [email protected] College of Materials, Xiamen University, Xiamen, 361005 China E-mail: [email protected]; [email protected]Search for more papers by this author First published: 16 November 2023 https://doi.org/10.1002/adom.202302303Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Near-infrared (NIR) luminescent materials hold promising applications in NIR spectroscopy technologies, but the NIR emitters are largely limited to some transition metals with spin-forbidden transitions that lead to low absorption efficiency of the pumping light. Exploring novel efficient NIR emitters is thus an urgent and challenging task for developing high-efficiency NIR luminescent materials. Here, an interesting NIR emission of Sm2+ is reported in BaAlSi5O2N7, which exhibits both a line spectrum at 682 nm and a broadband centered at 778 nm with a full-width at half maximum (FWHM) of 141 nm. Temperature-dependent photoluminescence spectra and decay curves evidence that the thermally assisted electrons crossover (TAEC) process contributes to the enhancement of the broadband NIR emission. The fabricated NIR phosphor-converted light-emitting diode (pc-LED) shows promising potential as a NIR lighting source and proves robust thermal stability under high-temperature aging test. The present surprising NIR emission from Sm2+ in highly stable oxynitrides opens a way to explore efficient and reliable NIR phosphors that are suitable for commercial LED chips. Conflict of Interest The authors declare no conflict of interest. Open Research Data Availability Statement The data that support the findings of this study are available from the corresponding author upon reasonable request. Supporting Information Filename Description adom202302303-sup-0001-SuppMat.pdf707.3 KB Supporting Information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1a) G. N. A. De Guzman, S. F. Hu, R. S. Liu, J. Chin. Chem. Soc. 2020, 68, 206; 10.1002/jccs.202000287 Web of Science®Google Scholarb) X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, E. H. Sargent, Nat. Photon. 2016, 10, 253. 10.1038/nphoton.2016.11 CASWeb of Science®Google Scholar 2J. Qiao, G. Zhou, Y. Zhou, Q. Zhang, Z. Xia, Nat. Commun. 2019, 10, 5267. 10.1038/s41467-019-13293-0 PubMedWeb of Science®Google Scholar 3D. Liu, G. Li, P. Dang, Q. Zhang, Y. Wei, L. Qiu, M. S. Molokeev, H. Lian, M. Shang, J. Lin, Light: Sci. Appl. 2022, 11, 112. 10.1038/s41377-022-00803-x CASPubMedWeb of Science®Google Scholar 4a) L. Zhang, D. Wang, Z. Hao, X. Zhang, G.-H. Pan, H. Wu, J. Zhang, Adv. Optical Mater. 2019, 7, 1900185; 10.1002/adom.201900185 Web of Science®Google Scholarb) P. Xiong, Y. Li, M. Peng, iScience 2020, 23, 101578; 10.1016/j.isci.2020.101578 CASPubMedWeb of Science®Google Scholarc) Z. Yang, Y. Zhao, Y. Zhou, J. Qiao, Y.-C. Chuang, M. S. Molokeev, Z. Xia, Adv. Funct. Mater. 2021, 32, 2103927; 10.1002/adfm.202103927 Web of Science®Google Scholard) S. Wang, R. Pang, T. Tan, H. Wu, Q. Wang, C. Li, S. Zhang, T. Tan, H. You, H. Zhang, Adv. Mater. 2023, 35, 2300124; 10.1002/adma.202300124 CASGoogle Scholare) L. Cao, X. Jia, W. Gan, C.-G. Ma, J. Zhang, B. Lou, J. Wang, Adv. Funct. Mater. 2023, 33, 2212135. 10.1002/adfm.202212135 CASWeb of Science®Google Scholar 5a) V. Rajendran, M.-H. Fang, W.-T. Huang, N. Majewska, T. Lesniewski, S. Mahlik, G. Leniec, S. M. Kaczmarek, W. K. Pang, V. K. Peterson, K.-M. Lu, H. Chang, R.-S. Liu, J. Am. Chem. Soc. 2021, 143, 19058; 10.1021/jacs.1c08334 CASPubMedWeb of Science®Google Scholarb) M.-H. Fang, Z. Bao, W.-T. Huang, R.-S. Liu, Chem. Rev. 2022, 122, 11474. 10.1021/acs.chemrev.1c00952 CASPubMedWeb of Science®Google Scholar 6a) Y.-J. Liang, F. Liu, Y.-F. Chen, X.-J. Wang, K.-N. Sun, Z. Pan, Light: Sci. Appl. 2016, 5, e16124; 10.1038/lsa.2016.124 CASPubMedWeb of Science®Google Scholarb) I. Villa, A. Vedda, I. X. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F. S. Rodríguez, Á. Juarranz, B. Del Rosal, D. H. Ortgies, P. H. Gonzalez, J. G. Solé, D. J. García, Nano Res. 2014, 8, 649; 10.1007/s12274-014-0549-1 CASWeb of Science®Google Scholarc) Y. Li, C. Ni, C. C. Lin, F. Pan, R.-S. Liu, J. Wang, Opt. Mater. 2014, 36, 1871; 10.1016/j.optmat.2014.03.020 CASWeb of Science®Google Scholard) S. Li, M. Amachraa, C. Chen, L. Wang, Z. Wang, S. P. Ong, R.-J. Xie, Matter 2022, 5, 1924; 10.1016/j.matt.2022.04.009 CASGoogle Scholare) S. Jin, H. Yuan, T. Pang, M. Zhang, Y. He, B. Zhuang, T. Wu, Y. Zheng, D. Chen, Adv. Funct. Mater. 2023, 2304577; 10.1002/adfm.202304577 Google Scholarf) S. Jin, R. Li, H. Huang, N. Jiang, J. Lin, S. Wang, Y. Zheng, X. Chen, D. Chen, Light: Sci. Appl. 2022, 11, 52. 10.1038/s41377-022-00739-2 CASPubMedWeb of Science®Google Scholar 7a) M. Zhao, S. Liu, H. Cai, F. Zhao, Z. Song, Q. Liu, Inorg. Chem. Front. 2022, 9, 4602; 10.1039/D2QI01093C CASWeb of Science®Google Scholarb) Z. Zhou, X. Yi, P. Xiong, X. Xu, Z. Ma, M. Peng, J. Mater. Chem. C 2020, 8, 14100; 10.1039/D0TC03212C CASWeb of Science®Google Scholarc) L. Yuan, Y. Jin, D. Zhu, Z. Mou, G. Xie, Y. Hu, ACS Sustainable Chem. Eng. 2020, 8, 6543; 10.1021/acssuschemeng.0c01377 CASWeb of Science®Google Scholard) B.-M. Liu, X.-X. Guo, L. Huang, R.-F. Zhou, R. Zou, C.-G. Ma, J. Wang, Adv. Mater. Technol. 2022, 8, 2201181. 10.1002/admt.202201181 Google Scholar 8H. Huang, R. Li, S. Jin, Z. Li, P. Huang, J. Hong, S. Du, W. Zheng, X. Chen, D. Chen, ACS Appl. Mater. Interfaces 2021, 13, 34561. 10.1021/acsami.1c09421 CASPubMedWeb of Science®Google Scholar 9a) V. Rajendran, W.-T. Huang, K.-C. Chen, H. Chang, R.-S. Liu, J. Mater. Chem. C 2022, 10, 14367; 10.1039/D2TC02817D CASWeb of Science®Google Scholarb) F. Zhao, Z. Song, Q. Liu, Laser Photonics Rev. 2022, 16, 2200380; 10.1002/lpor.202200380 CASWeb of Science®Google Scholarc) P. Dang, Y. Wei, D. Liu, G. Li, J. Lin, Adv. Optical Mater. 2023, 11, 2201739. 10.1002/adom.202201739 CASWeb of Science®Google Scholar 10Y. Xiao, W. Xiao, D. Wu, L. Guan, M. Luo, L.-D. Sun, Adv. Funct. Mater. 2021, 32, 2109618. 10.1002/adfm.202109618 Web of Science®Google Scholar 11a) J. Qiao, S. Zhang, X. Zhou, W. Chen, R. Gautier, Z. Xia, Adv. Mater. 2022, 34, 2201887; 10.1002/adma.202201887 CASWeb of Science®Google Scholarb) Z. Tang, F. Du, L. Zhao, H. Liu, Z. Leng, H. Xie, G. Zhang, Y. Wang, Laser Photonics Rev. 2023, 17, 2200911; 10.1002/lpor.202200911 CASGoogle Scholarc) Y. Wei, Z. Gao, X. Yun, H. Yang, Y. Liu, G. Li, Chem. Mater. 2020, 32, 8747; 10.1021/acs.chemmater.0c02814 CASWeb of Science®Google Scholard) Y. Wei, P. Dang, Z. Dai, G. Li, J. Lin, Chem. Mater. 2021, 33, 5496. 10.1021/acs.chemmater.1c01325 CASWeb of Science®Google Scholar 12a) L. Li, W. Wang, Y. Pan, X. Liu, H. M. Noh, J. H. Jeong, J. Alloys Compd. 2017, 723, 527; 10.1016/j.jallcom.2017.06.286 CASWeb of Science®Google Scholarb) A. S. M. M.' Alam, B. Di Bartolo, J. Chem. Phys. 1967, 47, 3790. 10.1063/1.1701535 CASWeb of Science®Google Scholar 13Z. Cao, X. Wei, L. Zhao, Y. Chen, M. Yin, ACS Appl. Mater. Interfaces 2016, 8, 34546. 10.1021/acsami.6b10917 CASPubMedWeb of Science®Google Scholar 14a) T. Zheng, M. Runowski, P. Wozny, S. Lis, V. Lavín, J. Mater. Chem. C 2020, 8, 4810; 10.1039/D0TC00463D CASWeb of Science®Google Scholarb) X. Qin, X. Liu, W. Huang, M. Bettinelli, X. Liu, Chem. Rev. 2017, 117, 4488. 10.1021/acs.chemrev.6b00691 CASPubMedWeb of Science®Google Scholar 15a) M. S. Alekhin, R. H. P. Awater, D. A. Biner, K. W. Krämer, J. T. M. De Haas, P. Dorenbos, J. Lumin. 2015, 167, 347; 10.1016/j.jlumin.2015.07.002 CASWeb of Science®Google Scholarb) W. Wolszczak, K. W. Krämer, P. Dorenbos, J. Lumin. 2020, 222, 117101. 10.1016/j.jlumin.2020.117101 CASWeb of Science®Google Scholar 16a) L. Wang, R.-J. Xie, T. Suehiro, T. Takeda, N. Hirosaki, Chem. Rev. 2018, 118, 1951; 10.1021/acs.chemrev.7b00284 CASPubMedWeb of Science®Google Scholarb) Y.-T. Tsai, H.-D. Nguyen, A. Lazarowska, S. Mahlik, M. Grinberg, R.-S. Liu, Angew. Chem. Int. Ed. 2016, 55, 9652; 10.1002/anie.201604427 CASPubMedWeb of Science®Google Scholarc) W.-Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H.-S. Sheu, T.-S. Chan, H. F. Greer, W. Zhou, S.-F. Hu, R.-S. Liu, J. P. Attfield, Angew. Chem., Int. Ed. 2013, 52, 8102; 10.1002/anie.201302494 CASPubMedWeb of Science®Google Scholard) D. Wen, H. Liu, Z. Ma, L. Zhou, J. Li, Y. Guo, Q. Zeng, P. A. Tanner, M. Wu, Angew. Chem. Int. Ed. 2023, 62, 202307868. 10.1002/anie.202307868 CASPubMedWeb of Science®Google Scholar 17C. Poesl, W. Schnick, Chem. Mater. 2017, 29, 3778. 10.1021/acs.chemmater.7b00871 CASWeb of Science®Google Scholar 18Y. Lv, L. Wang, Y. Zhuang, T.-L. Zhou, R.-J. Xie, J. Mater. Chem. C 2017, 5, 7095. 10.1039/C7TC01600J CASWeb of Science®Google Scholar 19a) Q. Zeng, Z. Pei, S. Wang, Q. Su, S. Lu, Mater. Res. Bull. 1999, 34, 1837; 10.1016/S0025-5408(99)00197-X CASWeb of Science®Google Scholarb) J. C. Gâcon, G. Grenet, J. C. Souillat, M. Kibler, J. Chem. Phys. 1978, 69, 868. 10.1063/1.436603 CASWeb of Science®Google Scholar 20a) R.-J. Xie, N. Hirosaki, Y. Yamamoto, T. Suehiro, M. Mitomo, K. Sakuma, J. Ceram. Soc. Jpn. 2005, 113, 462; 10.2109/jcersj.113.462 CASWeb of Science®Google Scholarb) Z. Shen, J. Grins, S. Esmaeilzadeh, H. Ehrenberg, J. Mater. Chem. 1999, 9, 1019. 10.1039/a808256a CASWeb of Science®Google Scholar 21J. F. Moulder, W. F. Stickle, W. M. Sobol, K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, Minnesota, USA 1992. Google Scholar 22N. Ullah, Z. Song, W. Liu, C.-C. Kuo, A. Ramiere, X. Cai, J. Colloid Interface Sci. 2022, 607, 479. 10.1016/j.jcis.2021.08.184 CASPubMedWeb of Science®Google Scholar 23R. T. Haasch, X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES), Springer, New York, USA 2014. 10.1007/978-1-4614-9281-8_3 Google Scholar 24T. C. Schäfer, J. R. Sorg, A. E. Sedykh, K. Müller-Buschbaum, Chem. Commun. 2021, 57, 11984. 10.1039/D1CC05357D CASPubMedWeb of Science®Google Scholar 25Z. Fang, D. Yang, Y. Zheng, J. Song, T. Yang, R. Song, Y. Xiang, J. Zhu, J. Adv. Ceram. 2021, 10, 1072. 10.1007/s40145-021-0492-z CASWeb of Science®Google Scholar 26a) Y. Lv, Y. Li, S. Fan, C. Chen, Y. Cai, H. Xu, R.-J. Xie, Inorg. Chem. Front. 2022, 9, 4930; 10.1039/D2QI01444K CASWeb of Science®Google Scholarb) S. Li, L. Wang, D. Tang, Y. Cho, X. Liu, X. Zhou, L. Lu, L. Zhang, T. Takeda, N. Hirosaki, R.-J. Xie, Chem. Mater. 2018, 30, 494. 10.1021/acs.chemmater.7b04605 CASWeb of Science®Google Scholar 27a) K. Singh, S. Vaidyanathan, Dalton Trans. 2022, 51, 11255; 10.1039/D2DT01042A CASPubMedWeb of Science®Google Scholarb) G. Blasse;, B. C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin, USA 1994. 10.1007/978-3-642-79017-1 Google Scholar 28a) Q. Lin, Q. Wang, M. Liao, M. Xiong, X. Feng, X. Zhang, H. Dong, D. Zhu, F. Wu, Z. Mu, ACS Appl. Mater. Interfaces 2021, 13, 18274; 10.1021/acsami.1c01417 CASPubMedWeb of Science®Google Scholarb) X. Zhou, W. Geng, J. Li, Y. Wang, J. Ding, Y. Wang, Adv. Optical Mater. 2020, 8, 1902003; 10.1002/adom.201902003 CASWeb of Science®Google Scholarc) L. Yao, Q. Shao, S. Han, C. Liang, J. He, J. Jiang, Chem. Mater. 2020, 32, 2430; 10.1021/acs.chemmater.9b04934 CASWeb of Science®Google Scholard) C. Lee, Z. Bao, M.-H. Fang, T. Lesniewski, S. Mahlik, M. Grinberg, G. Leniec, S. M. Kaczmarek, M. G. Brik, Y.-T. Tsai, T.-L. Tsai, R.-S. Liu, Inorg. Chem. 2020, 59, 376. 10.1021/acs.inorgchem.9b02630 CASPubMedWeb of Science®Google Scholar Early ViewOnline Version of Record before inclusion in an issue2302303 ReferencesRelatedInformation