Extracting section structure from resumes in Brazilian Portuguese

计算机科学 任务(项目管理) 章节(排版) 模板 解析 认知重构 鉴定(生物学) 阅读(过程) 订单(交换) 句法结构 情报检索 自然语言处理 语法 程序设计语言 语言学 管理 哲学 经济 财务 操作系统 生物 社会心理学 植物 心理学
作者
Matheus Werner,Eduardo Sany Laber
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:242: 122495-122495
标识
DOI:10.1016/j.eswa.2023.122495
摘要

This paper presents a novel resume parser designed to effectively reorganize the textual content of any resume into its original section structure. Our work addresses two practical challenges overlooked by the existing literature: (i) ensuring the correct reading order of text retrieved from resume files and (ii) extracting individually all sections, as well as work experience and education subsections. By taking into account the observation that most resumes adhere to basic document templates, we reframe the reading order problem as a template identification task. Our experiments suggest that even a widely-used small model like EfficientNet-B0 can accurately identify common templates. Additionally, we propose a sequence tagging approach that simultaneously identifies all resume sections and some subsections. We implement and compare two solutions based on the well-known CRF and BERT models. Our evaluation provides strong evidence that the CRF can serve as a practical alternative to BERT, depending on hardware and budget constraints. They yield comparable results in terms of identifying resume sections, while BERT displays a substantial advantage when identifying education and work experience subsections. An interesting direction for future work is to expand our approach to ensure the correct ordering of a large family of templates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
panda完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
隐形曼青应助Tiannn采纳,获得10
1秒前
2秒前
2秒前
黑面宝宝发布了新的文献求助10
4秒前
hhh发布了新的文献求助10
5秒前
张豪杰发布了新的文献求助10
5秒前
8秒前
10秒前
彭于晏应助过氧化氢采纳,获得30
11秒前
11秒前
xiemou完成签到,获得积分10
13秒前
高峰发布了新的文献求助10
14秒前
14秒前
Lemon发布了新的文献求助10
15秒前
18秒前
我是老大应助hhh采纳,获得10
22秒前
小二郎应助回忆lhy采纳,获得10
24秒前
24秒前
24秒前
张腾昊完成签到,获得积分10
25秒前
搜集达人应助YYQ采纳,获得30
26秒前
27秒前
BMH完成签到,获得积分10
28秒前
29秒前
abc发布了新的文献求助10
30秒前
Owen应助Danboard采纳,获得10
30秒前
30秒前
30秒前
李文艳发布了新的文献求助10
31秒前
怡崽完成签到,获得积分10
32秒前
32秒前
YI完成签到 ,获得积分10
34秒前
线条小狗完成签到,获得积分10
34秒前
yx_cheng发布了新的文献求助10
35秒前
36秒前
chcmuer发布了新的文献求助10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952693
求助须知:如何正确求助?哪些是违规求助? 3498194
关于积分的说明 11090590
捐赠科研通 3228748
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801350