A methodological study of exposome based on an open database: Association analysis between exposure to metal mixtures and hyperuricemia

暴露的 全国健康与营养检查调查 环境卫生 高尿酸血症 医学 逻辑回归 老年学 内科学 尿酸 人口
作者
Hao Chen,Min Wang,Chongyang Zhang,Jiao Li
出处
期刊:Chemosphere [Elsevier BV]
卷期号:344: 140318-140318 被引量:6
标识
DOI:10.1016/j.chemosphere.2023.140318
摘要

Exposome recognizes that humans are constantly exposed to multiple environmental factors, and elucidating the health effects of complex exposure mixtures places greater demands on analytical methods.We aimed to explore the association between mixed exposure to metals and hyperuricemia (HUA), and highlight the potential of explainable machine learning (EML) and causal mediation analysis (CMA) for application in the analysis of exposome data.Pre-pandemic data from the National Health and Nutrition Examination Survey (NHANES) 2011-2020 and a total of 13780 individuals were included. We first used traditional statistical models (multiple logistic regression (MLR) and restricted cubic spline regression (RCS)) and EML to explore associations between mixed metals exposures and HUA, followed by the CMA using the 4-way decomposition method to analyze the interaction and mediation effects among BMI or estimated glomerular filtration rate (eGFR), metals and HUA.The prevalence of HUA was 18.91% (2606/13780). The MLR showed that mercury (Q4 vs Q1: OR = 1.08, 95% CI:1.02-1.14) and lead (Q4 vs Q1: OR = 1.23, 95% CI:1.13-1.34) were generally positively associated with HUA. Higher concentrations of lead, mercury, selenium and manganese were associated with the increased odds of HUA, and BMI and eGFR were the top two variables attributable to the risk of developing HUA in the EML. Subgroup analyses from the MLR and EML consistently demonstrated the positive relationship between exposure to lead, mercury and selenium in participants with BMI <25 kg/m2 and BMI ≥30 kg/m2. BMI mediated 32.12% of the association between lead exposure and HUA, and the interaction between BMI and lead accounted for 3.88% of the association in the CMA.Heavy metals can increase the HUA risk and BMI or eGFR can mediate and interact with metals to cause HUA. Future studies based on exposome can attempt to utilize the EML and CMA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
零四零零柒贰完成签到 ,获得积分10
5秒前
刘英坤完成签到,获得积分10
6秒前
6秒前
张登秀关注了科研通微信公众号
10秒前
cbf完成签到,获得积分10
11秒前
xxxxyyyy1完成签到 ,获得积分10
11秒前
Yh_alive完成签到,获得积分10
12秒前
14秒前
田様应助丰富如南采纳,获得10
19秒前
啦啦啦啦啦完成签到 ,获得积分10
20秒前
眼睛大的乐儿完成签到,获得积分10
21秒前
22秒前
玥月完成签到 ,获得积分10
22秒前
在九月完成签到 ,获得积分10
23秒前
yk完成签到,获得积分10
25秒前
听风随影完成签到,获得积分20
26秒前
ding应助美好向彤采纳,获得10
27秒前
领导范儿应助ZhuYJ采纳,获得10
29秒前
听风随影发布了新的文献求助10
29秒前
沉默不言完成签到,获得积分20
30秒前
快乐仙知完成签到 ,获得积分10
34秒前
沉默不言发布了新的文献求助30
35秒前
可爱的函函应助听风随影采纳,获得10
36秒前
上官若男应助4356采纳,获得10
37秒前
40秒前
41秒前
42秒前
我先睡了发布了新的文献求助10
43秒前
ZhuYJ发布了新的文献求助10
45秒前
LL爱读书发布了新的文献求助10
46秒前
许三问完成签到 ,获得积分0
46秒前
47秒前
48秒前
空山新雨完成签到,获得积分10
49秒前
50秒前
51秒前
Kenzonvay发布了新的文献求助10
51秒前
英俊的铭应助春春采纳,获得10
52秒前
善良海云发布了新的文献求助10
54秒前
Jiangzhibing发布了新的文献求助10
55秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951007
求助须知:如何正确求助?哪些是违规求助? 3496402
关于积分的说明 11081862
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 801003