A methodological study of exposome based on an open database: Association analysis between exposure to metal mixtures and hyperuricemia

暴露的 全国健康与营养检查调查 环境卫生 高尿酸血症 医学 逻辑回归 老年学 内科学 尿酸 人口
作者
Hao Chen,Min Wang,Chongyang Zhang,Jiao Li
出处
期刊:Chemosphere [Elsevier]
卷期号:344: 140318-140318 被引量:3
标识
DOI:10.1016/j.chemosphere.2023.140318
摘要

Exposome recognizes that humans are constantly exposed to multiple environmental factors, and elucidating the health effects of complex exposure mixtures places greater demands on analytical methods.We aimed to explore the association between mixed exposure to metals and hyperuricemia (HUA), and highlight the potential of explainable machine learning (EML) and causal mediation analysis (CMA) for application in the analysis of exposome data.Pre-pandemic data from the National Health and Nutrition Examination Survey (NHANES) 2011-2020 and a total of 13780 individuals were included. We first used traditional statistical models (multiple logistic regression (MLR) and restricted cubic spline regression (RCS)) and EML to explore associations between mixed metals exposures and HUA, followed by the CMA using the 4-way decomposition method to analyze the interaction and mediation effects among BMI or estimated glomerular filtration rate (eGFR), metals and HUA.The prevalence of HUA was 18.91% (2606/13780). The MLR showed that mercury (Q4 vs Q1: OR = 1.08, 95% CI:1.02-1.14) and lead (Q4 vs Q1: OR = 1.23, 95% CI:1.13-1.34) were generally positively associated with HUA. Higher concentrations of lead, mercury, selenium and manganese were associated with the increased odds of HUA, and BMI and eGFR were the top two variables attributable to the risk of developing HUA in the EML. Subgroup analyses from the MLR and EML consistently demonstrated the positive relationship between exposure to lead, mercury and selenium in participants with BMI <25 kg/m2 and BMI ≥30 kg/m2. BMI mediated 32.12% of the association between lead exposure and HUA, and the interaction between BMI and lead accounted for 3.88% of the association in the CMA.Heavy metals can increase the HUA risk and BMI or eGFR can mediate and interact with metals to cause HUA. Future studies based on exposome can attempt to utilize the EML and CMA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tjunqi完成签到,获得积分10
刚刚
刚刚
科研通AI2S应助下课了吧采纳,获得10
1秒前
1秒前
1秒前
好的完成签到,获得积分20
2秒前
蜂蜜不是糖完成签到 ,获得积分10
2秒前
狮子最爱吃芒果完成签到,获得积分10
2秒前
3秒前
4秒前
尘雾完成签到,获得积分10
4秒前
澜生发布了新的文献求助10
5秒前
leekle完成签到,获得积分10
6秒前
shengChen发布了新的文献求助10
6秒前
自信鞯发布了新的文献求助10
7秒前
江北小赵完成签到,获得积分10
7秒前
7秒前
7秒前
clock完成签到 ,获得积分10
7秒前
虫二先生完成签到 ,获得积分10
7秒前
甜甜的难敌完成签到,获得积分10
8秒前
8秒前
9秒前
小潘同学完成签到,获得积分10
9秒前
9秒前
科研通AI5应助传统的海露采纳,获得10
10秒前
学术刘亦菲完成签到,获得积分10
10秒前
成就的烧鹅完成签到,获得积分20
10秒前
11秒前
dd发布了新的文献求助10
11秒前
luoshi应助leon采纳,获得30
12秒前
12秒前
wang完成签到,获得积分10
12秒前
可爱的函函应助hu采纳,获得10
12秒前
12秒前
我测你码关注了科研通微信公众号
13秒前
下课了吧发布了新的文献求助10
13秒前
jy发布了新的文献求助10
13秒前
绘梨衣完成签到,获得积分10
14秒前
数据线完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794