Can Technology Startups Hire Talented Early Employees? Ability, Preferences, and Employee First Job Choice

营销 业务 劳动经济学 工作(物理) 创业 经济 工程类 财务 机械工程
作者
Michael Roach,Henry Sauermann
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (6): 3619-3644 被引量:12
标识
DOI:10.1287/mnsc.2023.4868
摘要

Early stage technology startups rely critically on talented scientists and engineers to commercialize new technologies. And yet these startups compete with established technology firms to hire the best workers. Theories of ability sorting predict that high-ability workers will choose jobs in established firms that offer greater complementary assets and higher pay, leaving low-ability workers to take lower paying and riskier jobs in startups. We propose an alternative view in which heterogeneity in both worker ability and preferences enable startups to hire talented workers who have a taste for a startup work environment even at lower pay. Using a longitudinal survey that follows 2,394 science and engineering PhDs from graduate school into their first industrial employment, we overcome common empirical challenges by observing ability and stated preferences prior to entry into the labor market. We find that both ability and career preferences strongly predict startup employment with high-ability workers who prefer startup employment being the most likely to work in a startup. We show that this partly reflects dual selection effects whereby worker preferences result in a large pool of startup job applicants and startups make job offers to the most talented workers. Additional analyses confirm that startup employees earn approximately 17% lower pay. This gap is greatest for high-ability workers and persists over workers’ early careers, suggesting that they accept a negative compensating differential in exchange for the nonpecuniary benefits of startup employment. Data on job attributes and stated reasons for job choice further support this interpretation. This paper was accepted by Toby Stuart, entrepreneurship and innovation. Funding: This work was supported by the National Science Foundation SciSIP Award [Grant 1262270] and the Ewing Marion Kauffman Foundation (Junior Faculty Fellowship). Supplemental Material: The online appendix and data are available at https://doi.org/10.1287/mnsc.2023.4868 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
蒸馏水完成签到,获得积分10
2秒前
pp完成签到,获得积分10
2秒前
feng发布了新的文献求助10
3秒前
Cris发布了新的文献求助10
3秒前
青苔发布了新的文献求助10
4秒前
害羞含雁完成签到,获得积分10
4秒前
wanci应助自觉妖妖采纳,获得10
4秒前
平淡雪枫完成签到 ,获得积分10
5秒前
5秒前
Navo完成签到,获得积分10
5秒前
5秒前
所所应助酷酷的店员采纳,获得10
6秒前
田様应助酷酷的店员采纳,获得10
6秒前
上官若男应助酷酷的店员采纳,获得10
6秒前
6秒前
天天快乐应助酷酷的店员采纳,获得10
6秒前
科目三应助酷酷的店员采纳,获得10
6秒前
wanci应助酷酷的店员采纳,获得10
7秒前
李爱国应助酷酷的店员采纳,获得10
7秒前
Orange应助酷酷的店员采纳,获得10
7秒前
科研废物完成签到,获得积分10
7秒前
情怀应助111采纳,获得10
7秒前
7秒前
Lucas应助酷酷的店员采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
FL应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3657791
求助须知:如何正确求助?哪些是违规求助? 3219810
关于积分的说明 9733527
捐赠科研通 2928770
什么是DOI,文献DOI怎么找? 1603674
邀请新用户注册赠送积分活动 756699
科研通“疑难数据库(出版商)”最低求助积分说明 734060