Improved Differentiable Architecture Search With Multi-Stage Progressive Partial Channel Connections

频道(广播) 计算机科学 建筑 可微函数 卷积(计算机科学) 卷积神经网络 钥匙(锁) 人工智能 计算机工程 计算机网络 人工神经网络 数学 计算机安全 艺术 数学分析 视觉艺术
作者
Yu Xue,Changchang Lu,Ferrante Neri,Jiafeng Qin
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 32-43 被引量:13
标识
DOI:10.1109/tetci.2023.3301395
摘要

Neural architecture search has attracted great attention in the research community and has been successfully applied in the industry recently. Differentiable architecture search (DARTS) is an efficient architecture search method. However, the networks searched by DARTS are often unstable due to the large gap in the architecture depth between the search phase and the verification phase. In addition, due to unfair exclusive competition between different candidate operations, DARTS is prone to skip connection aggregation, which may cause performance collapse. In this article, we propose progressive partial channel connections based on channel attention for differentiable architecture search (PA-DARTS) to solve the above problems. In the early stage of searching, we only select a few key channels for convolution using channel attention and reserve all candidate operations. As the search progresses, we gradually increase the number of channels and eliminate unpromising candidate operations to ensure that the search phase and verification phase are all carried out on 20 cells. Due to the existence of the partial channel connections based on channel attention, we can eliminate the unfair competition between operations and increase the stability of PA-DARTS. Experimental results showed that PA-DARTS could achieve 97.59% and 83.61% classification accuracy on CIFAR-10 and CIFAR-100, respectively. On ImageNet, our algorithm achieved 75.3% classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只鱼的故事完成签到,获得积分10
刚刚
殷勤的咖啡完成签到,获得积分10
刚刚
1秒前
科研通AI6应助豆包_P12345采纳,获得10
1秒前
ASHhan111完成签到,获得积分10
1秒前
过时的热狗完成签到,获得积分10
2秒前
大个应助静书采纳,获得10
2秒前
吕大本事完成签到,获得积分10
2秒前
Ava应助电池小能手采纳,获得10
2秒前
善学以致用应助狂野含巧采纳,获得10
2秒前
mmyhn应助朴实热狗采纳,获得20
2秒前
zz完成签到,获得积分10
2秒前
2秒前
mumu完成签到,获得积分10
2秒前
taoyuan发布了新的文献求助10
3秒前
HY完成签到,获得积分20
3秒前
欧大大完成签到,获得积分10
3秒前
123关闭了123文献求助
4秒前
4秒前
lll发布了新的文献求助10
4秒前
天真笑白发布了新的文献求助10
4秒前
独特的夜阑完成签到 ,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
我想静静发布了新的文献求助10
5秒前
尹天扬完成签到,获得积分10
6秒前
6秒前
顾矜应助帆帆采纳,获得10
6秒前
7秒前
7秒前
哥屋恩发布了新的文献求助10
8秒前
寇博翔发布了新的文献求助10
8秒前
elerain发布了新的文献求助10
9秒前
Owen应助球球尧伞耳采纳,获得200
9秒前
he大海贼完成签到,获得积分10
9秒前
浮游应助王晓林采纳,获得10
9秒前
10秒前
小韩同学完成签到,获得积分20
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4891096
求助须知:如何正确求助?哪些是违规求助? 4174686
关于积分的说明 12956581
捐赠科研通 3936718
什么是DOI,文献DOI怎么找? 2159856
邀请新用户注册赠送积分活动 1178171
关于科研通互助平台的介绍 1083752