亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved Differentiable Architecture Search With Multi-Stage Progressive Partial Channel Connections

频道(广播) 计算机科学 建筑 可微函数 卷积(计算机科学) 卷积神经网络 钥匙(锁) 人工智能 计算机工程 计算机网络 人工神经网络 数学 计算机安全 艺术 数学分析 视觉艺术
作者
Yu Xue,Changchang Lu,Ferrante Neri,Jiafeng Qin
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 32-43 被引量:13
标识
DOI:10.1109/tetci.2023.3301395
摘要

Neural architecture search has attracted great attention in the research community and has been successfully applied in the industry recently. Differentiable architecture search (DARTS) is an efficient architecture search method. However, the networks searched by DARTS are often unstable due to the large gap in the architecture depth between the search phase and the verification phase. In addition, due to unfair exclusive competition between different candidate operations, DARTS is prone to skip connection aggregation, which may cause performance collapse. In this article, we propose progressive partial channel connections based on channel attention for differentiable architecture search (PA-DARTS) to solve the above problems. In the early stage of searching, we only select a few key channels for convolution using channel attention and reserve all candidate operations. As the search progresses, we gradually increase the number of channels and eliminate unpromising candidate operations to ensure that the search phase and verification phase are all carried out on 20 cells. Due to the existence of the partial channel connections based on channel attention, we can eliminate the unfair competition between operations and increase the stability of PA-DARTS. Experimental results showed that PA-DARTS could achieve 97.59% and 83.61% classification accuracy on CIFAR-10 and CIFAR-100, respectively. On ImageNet, our algorithm achieved 75.3% classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳6完成签到 ,获得积分10
1秒前
10秒前
壮观沉鱼完成签到 ,获得积分10
13秒前
15秒前
mjsdx完成签到 ,获得积分10
16秒前
守一完成签到,获得积分10
21秒前
29秒前
FashionBoy应助啦啦啦就好采纳,获得10
30秒前
南江悍匪发布了新的文献求助10
33秒前
34秒前
Panther完成签到,获得积分10
36秒前
Alex发布了新的文献求助1000
41秒前
harry发布了新的文献求助10
53秒前
Kashing完成签到,获得积分0
57秒前
南江悍匪完成签到,获得积分10
57秒前
英俊的铭应助科研通管家采纳,获得10
59秒前
科目三应助科研通管家采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
1分钟前
1分钟前
苹果丹烟完成签到 ,获得积分10
1分钟前
安渝完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
巫马嫣然完成签到,获得积分10
1分钟前
kk_1315完成签到,获得积分10
1分钟前
方1111完成签到,获得积分10
1分钟前
巫马嫣然发布了新的文献求助10
1分钟前
Omni完成签到,获得积分10
1分钟前
方1111发布了新的文献求助30
1分钟前
nooooorae应助kk_1315采纳,获得50
1分钟前
sora98完成签到 ,获得积分10
1分钟前
桐桐应助cool_随风采纳,获得10
1分钟前
汉堡包应助cool_随风采纳,获得10
1分钟前
大爱人生完成签到 ,获得积分10
1分钟前
sarah完成签到,获得积分10
1分钟前
吃花生酱的猫完成签到,获得积分10
1分钟前
射干鸢尾发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345722
求助须知:如何正确求助?哪些是违规求助? 4480561
关于积分的说明 13946480
捐赠科研通 4378124
什么是DOI,文献DOI怎么找? 2405626
邀请新用户注册赠送积分活动 1398183
关于科研通互助平台的介绍 1370666