已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improved Differentiable Architecture Search With Multi-Stage Progressive Partial Channel Connections

频道(广播) 计算机科学 建筑 可微函数 卷积(计算机科学) 卷积神经网络 钥匙(锁) 人工智能 计算机工程 计算机网络 人工神经网络 数学 计算机安全 艺术 数学分析 视觉艺术
作者
Yu Xue,Changchang Lu,Ferrante Neri,Jiafeng Qin
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 32-43 被引量:13
标识
DOI:10.1109/tetci.2023.3301395
摘要

Neural architecture search has attracted great attention in the research community and has been successfully applied in the industry recently. Differentiable architecture search (DARTS) is an efficient architecture search method. However, the networks searched by DARTS are often unstable due to the large gap in the architecture depth between the search phase and the verification phase. In addition, due to unfair exclusive competition between different candidate operations, DARTS is prone to skip connection aggregation, which may cause performance collapse. In this article, we propose progressive partial channel connections based on channel attention for differentiable architecture search (PA-DARTS) to solve the above problems. In the early stage of searching, we only select a few key channels for convolution using channel attention and reserve all candidate operations. As the search progresses, we gradually increase the number of channels and eliminate unpromising candidate operations to ensure that the search phase and verification phase are all carried out on 20 cells. Due to the existence of the partial channel connections based on channel attention, we can eliminate the unfair competition between operations and increase the stability of PA-DARTS. Experimental results showed that PA-DARTS could achieve 97.59% and 83.61% classification accuracy on CIFAR-10 and CIFAR-100, respectively. On ImageNet, our algorithm achieved 75.3% classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
5秒前
年轻的凤发布了新的文献求助30
7秒前
33完成签到,获得积分10
11秒前
完美世界应助jxr采纳,获得10
15秒前
科研通AI2S应助ninye采纳,获得20
16秒前
20秒前
24秒前
25秒前
26秒前
科目三应助菜鸟一枚采纳,获得10
26秒前
NexusExplorer应助nihao采纳,获得10
28秒前
lls发布了新的文献求助10
29秒前
30秒前
jxr发布了新的文献求助10
30秒前
35秒前
36秒前
38秒前
43秒前
ting发布了新的文献求助10
45秒前
46秒前
西瓜完成签到 ,获得积分10
47秒前
48秒前
菜鸟一枚发布了新的文献求助10
49秒前
Limpidly完成签到,获得积分10
49秒前
nater4ver发布了新的文献求助10
53秒前
53秒前
隐形曼青应助鲜艳的熊猫采纳,获得10
55秒前
58秒前
58秒前
1分钟前
1分钟前
青提芝士挞完成签到 ,获得积分10
1分钟前
nihao发布了新的文献求助10
1分钟前
1分钟前
初雪完成签到,获得积分10
1分钟前
1分钟前
李禾完成签到,获得积分10
1分钟前
上官若男应助lls采纳,获得10
1分钟前
鳕鹅完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162031
求助须知:如何正确求助?哪些是违规求助? 2813164
关于积分的说明 7898852
捐赠科研通 2472153
什么是DOI,文献DOI怎么找? 1316366
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129