Obstacle Avoidance Path Planning for Apple Picking Robotic Arm Incorporating Artificial Potential Field and A* Algorithm

避障 运动规划 计算机科学 运动学 路径(计算) 障碍物 计算机视觉 人工智能 数学优化 路径长度 算法 机器人 移动机器人 数学 经典力学 计算机网络 法学 政治学 程序设计语言 物理
作者
M. Zhuang,Ge Li,Kexin Ding
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 100070-100082 被引量:5
标识
DOI:10.1109/access.2023.3312763
摘要

With the development and maturity of the automated robotics industry, more and more apple plantations are introducing automated picking robotic arms for fruit picking. However, the complex environment in which apple fruit is picked has made it an urgent problem to optimise the robot’s picking performance through obstacle avoidance path planning. The experiment selects the Six degrees of freedom manipulator as the research object, and on the basis of its Kinematics analysis, introduces the introduction of artificial potential field (APF) to carry out the path planning of the manipulator. At the same time, it integrates it with A* algorithm to jointly achieve the optimization of the parameters of the obstacle avoidance path of the manipulator. In addition, in order to avoid parameter optimization falling into local extremum during the path planning process, the IRRT algorithm is incorporated to re plan the path, improve the smoothness of the path, and finally verify its obstacle avoidance effect through simulation experiments. The results showed that in the convergence comparison, the research method had the minimum loss function value and the stable fitness value as soon as the iteration proceeded to the 50th and 20th generation, respectively. A On the dataset, the research method had the minimum MAPE value when the iteration proceeded to the 45th generation, with a value close to 0. At the same moment, the MAPE values of the IAPF algorithm, the IRRT algorithm and the literature were 0.052%, 0.108% and 0.218%, respectively. In the practical application analysis, when the robot arm starts running in three different starting positions a, b and c, the IRRT algorithm’s obstacle avoidance path has a larger arc and tends to reach the target location through a longer path, while the research method tends to find a relatively closer obstacle avoidance path that can be passed smoothly. The above results show that the research method is highly adaptable to robotic arm path avoidance planning and can complete obstacle avoidance path planning faster and more reasonably, providing new technical support for optimising the path planning system of apple picking robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ruirui完成签到,获得积分10
1秒前
sfc999发布了新的文献求助10
1秒前
肉卷子发布了新的文献求助10
1秒前
JamesPei应助飘逸楷瑞采纳,获得30
1秒前
2秒前
2秒前
研友_VZGVzn发布了新的文献求助10
3秒前
wy18567337203发布了新的文献求助10
3秒前
Begonia发布了新的文献求助10
3秒前
浮游应助YUMI采纳,获得50
3秒前
3秒前
3秒前
orixero应助ZJY采纳,获得10
4秒前
Lin2019发布了新的文献求助10
4秒前
威武的紫丝完成签到,获得积分10
4秒前
4秒前
刘明生发布了新的文献求助20
4秒前
lp完成签到,获得积分20
5秒前
QIQ完成签到,获得积分10
5秒前
月月鸟完成签到 ,获得积分10
5秒前
ruirui发布了新的文献求助10
5秒前
ESTHERDY发布了新的文献求助10
6秒前
6秒前
accept小猫发布了新的文献求助10
6秒前
清爽盼秋完成签到,获得积分10
7秒前
冬果发布了新的文献求助10
7秒前
7秒前
积极的绿竹完成签到,获得积分10
8秒前
超A芝士葡萄完成签到,获得积分10
8秒前
凡F完成签到 ,获得积分10
8秒前
lingluo完成签到,获得积分10
9秒前
Sun发布了新的文献求助30
9秒前
慕青应助小松奈奈采纳,获得10
9秒前
科目三应助yjq采纳,获得10
9秒前
开放凤发布了新的文献求助10
9秒前
whatever发布了新的文献求助10
10秒前
稀奇发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351999
求助须知:如何正确求助?哪些是违规求助? 4484908
关于积分的说明 13961093
捐赠科研通 4384639
什么是DOI,文献DOI怎么找? 2409094
邀请新用户注册赠送积分活动 1401552
关于科研通互助平台的介绍 1375095