Real-Time Prediction of Formation Pore Pressure Using Hybrid LSTM-BP Model

人工神经网络 钻探 计算机科学 孔隙水压力 人工智能 超参数 测井 数据挖掘 石油工程 地质学 材料科学 岩土工程 冶金
作者
Xuezhe Yao,Xianzhi Song,Liang Han,Haolin Zhang,Zhaopeng Zhu,Baoyu Li,Rui Zhang
出处
期刊:50th U.S. Rock Mechanics/Geomechanics Symposium 被引量:3
标识
DOI:10.56952/arma-2023-0130
摘要

ABSTRACT Accurate and real-time prediction of formation pore pressure is critical to ensure drilling safety. However, the performance of the most traditional formation pore pressure calculation methods are not satisfied in field applications due to their limited accuracy and time-effectiveness. In this paper, a novel artificial intelligence model is proposed to accurately predict formation pore pressure in real-time. First, the dataset for model training is prepared after handling the outliers and missing values of the drilling and logging data, which collected from 12 wells in Tarim Basin. And the logging data of the offset well is used to develop a logging data prediction model for the well under drilling based on the error Back Propagation Neural Network (BPNN). Then, a hybrid model is created by combining the Long Short-Term Memory Neural Network (LSTM) and the BPNN. Finally, the hybrid LSTM-BP model is trained and validated on the drilling and logging dataset, and the grid search algorithm is used to optimize the hyperparameters of the model. The hybrid LSTM-BP model is utilized to estimate formation pore pressure by inputting the drilling data of the well under drilling and longing data of the BPNN model predicted. The results indicate that the relative error of formation pore pressure prediction is less than 10%. This paper provides an accurate method to predict formation pore pressure in real-time, which is of great significance for maintaining the stability of the wellbore and ensuring the safety of drilling. INTRODUCTION Formation pore pressure is the pressure of the fluid in the formation, which is one of the most crucial fundamental data in the process of petroleum exploration and development, and a crucial foundation for the design of drilling plans and the analysis of wellbore stability (Azadpour et al., 2015; de Souza et al., 2021). However, when formation pore pressure is predicted incorrectly, it can lead to drilling risks including gas invasion, kick, and even blowout, which may result in enormous financial losses such as in the Deepwater Horizon tragedy. Therefore, accurate prediction of formation pore pressure in the process of drilling is conducive to ensuring drilling safety, improving rate of penetration (ROP), protecting the reservoir, and improving oil and gas recovery (Lei and Jie, 2004).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
果果完成签到,获得积分10
1秒前
1秒前
2秒前
5秒前
5秒前
6秒前
a_jumper发布了新的文献求助10
7秒前
学术菜鸡发布了新的文献求助10
7秒前
且彳亍发布了新的文献求助10
7秒前
7秒前
领导范儿应助具足精严采纳,获得10
7秒前
HuiJN完成签到 ,获得积分10
7秒前
7秒前
深情安青应助hoh采纳,获得10
8秒前
9秒前
lovesonic完成签到,获得积分10
10秒前
11秒前
阳光萌萌发布了新的文献求助30
11秒前
小小发布了新的文献求助10
13秒前
14秒前
英姑应助MHY采纳,获得10
15秒前
15秒前
15秒前
呆呆发布了新的文献求助10
16秒前
16秒前
酷波er应助非而者厚采纳,获得10
17秒前
17秒前
我爱科研完成签到 ,获得积分10
19秒前
19秒前
菜老头发布了新的文献求助20
20秒前
21秒前
21秒前
huiyue发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
25秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082633
求助须知:如何正确求助?哪些是违规求助? 4299977
关于积分的说明 13397686
捐赠科研通 4123912
什么是DOI,文献DOI怎么找? 2258602
邀请新用户注册赠送积分活动 1262850
关于科研通互助平台的介绍 1196866