Real-Time Prediction of Formation Pore Pressure Using Hybrid LSTM-BP Model

人工神经网络 钻探 计算机科学 孔隙水压力 人工智能 超参数 测井 数据挖掘 石油工程 地质学 材料科学 岩土工程 冶金
作者
Xuezhe Yao,Xianzhi Song,Liang Han,Haolin Zhang,Zhaopeng Zhu,Baoyu Li,Rui Zhang
出处
期刊:50th U.S. Rock Mechanics/Geomechanics Symposium 被引量:3
标识
DOI:10.56952/arma-2023-0130
摘要

ABSTRACT Accurate and real-time prediction of formation pore pressure is critical to ensure drilling safety. However, the performance of the most traditional formation pore pressure calculation methods are not satisfied in field applications due to their limited accuracy and time-effectiveness. In this paper, a novel artificial intelligence model is proposed to accurately predict formation pore pressure in real-time. First, the dataset for model training is prepared after handling the outliers and missing values of the drilling and logging data, which collected from 12 wells in Tarim Basin. And the logging data of the offset well is used to develop a logging data prediction model for the well under drilling based on the error Back Propagation Neural Network (BPNN). Then, a hybrid model is created by combining the Long Short-Term Memory Neural Network (LSTM) and the BPNN. Finally, the hybrid LSTM-BP model is trained and validated on the drilling and logging dataset, and the grid search algorithm is used to optimize the hyperparameters of the model. The hybrid LSTM-BP model is utilized to estimate formation pore pressure by inputting the drilling data of the well under drilling and longing data of the BPNN model predicted. The results indicate that the relative error of formation pore pressure prediction is less than 10%. This paper provides an accurate method to predict formation pore pressure in real-time, which is of great significance for maintaining the stability of the wellbore and ensuring the safety of drilling. INTRODUCTION Formation pore pressure is the pressure of the fluid in the formation, which is one of the most crucial fundamental data in the process of petroleum exploration and development, and a crucial foundation for the design of drilling plans and the analysis of wellbore stability (Azadpour et al., 2015; de Souza et al., 2021). However, when formation pore pressure is predicted incorrectly, it can lead to drilling risks including gas invasion, kick, and even blowout, which may result in enormous financial losses such as in the Deepwater Horizon tragedy. Therefore, accurate prediction of formation pore pressure in the process of drilling is conducive to ensuring drilling safety, improving rate of penetration (ROP), protecting the reservoir, and improving oil and gas recovery (Lei and Jie, 2004).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ss发布了新的文献求助10
5秒前
caitSith发布了新的文献求助10
5秒前
Nozi完成签到,获得积分10
8秒前
47发布了新的文献求助10
8秒前
稳重的以珊完成签到 ,获得积分10
8秒前
传统的盼波应助Yidie采纳,获得10
9秒前
阙霓虹完成签到 ,获得积分10
11秒前
科目三应助caitSith采纳,获得10
11秒前
chenzhi发布了新的文献求助10
11秒前
11秒前
科研通AI6.1应助大理学子采纳,获得10
11秒前
pojian完成签到,获得积分10
12秒前
哦吼发布了新的文献求助10
12秒前
Deq完成签到,获得积分10
13秒前
所所应助小任性采纳,获得10
14秒前
16秒前
顺顺过过发布了新的文献求助10
16秒前
18秒前
科研通AI6.1应助陈龙采纳,获得10
18秒前
18秒前
19秒前
21秒前
21秒前
21秒前
21秒前
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
21秒前
Twonej应助科研通管家采纳,获得30
21秒前
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838