Real-Time Prediction of Formation Pore Pressure Using Hybrid LSTM-BP Model

人工神经网络 钻探 计算机科学 孔隙水压力 人工智能 超参数 测井 数据挖掘 石油工程 地质学 材料科学 岩土工程 冶金
作者
Xuezhe Yao,Xianzhi Song,Liang Han,Haolin Zhang,Zhaopeng Zhu,Baoyu Li,Rui Zhang
出处
期刊:50th U.S. Rock Mechanics/Geomechanics Symposium 被引量:3
标识
DOI:10.56952/arma-2023-0130
摘要

ABSTRACT Accurate and real-time prediction of formation pore pressure is critical to ensure drilling safety. However, the performance of the most traditional formation pore pressure calculation methods are not satisfied in field applications due to their limited accuracy and time-effectiveness. In this paper, a novel artificial intelligence model is proposed to accurately predict formation pore pressure in real-time. First, the dataset for model training is prepared after handling the outliers and missing values of the drilling and logging data, which collected from 12 wells in Tarim Basin. And the logging data of the offset well is used to develop a logging data prediction model for the well under drilling based on the error Back Propagation Neural Network (BPNN). Then, a hybrid model is created by combining the Long Short-Term Memory Neural Network (LSTM) and the BPNN. Finally, the hybrid LSTM-BP model is trained and validated on the drilling and logging dataset, and the grid search algorithm is used to optimize the hyperparameters of the model. The hybrid LSTM-BP model is utilized to estimate formation pore pressure by inputting the drilling data of the well under drilling and longing data of the BPNN model predicted. The results indicate that the relative error of formation pore pressure prediction is less than 10%. This paper provides an accurate method to predict formation pore pressure in real-time, which is of great significance for maintaining the stability of the wellbore and ensuring the safety of drilling. INTRODUCTION Formation pore pressure is the pressure of the fluid in the formation, which is one of the most crucial fundamental data in the process of petroleum exploration and development, and a crucial foundation for the design of drilling plans and the analysis of wellbore stability (Azadpour et al., 2015; de Souza et al., 2021). However, when formation pore pressure is predicted incorrectly, it can lead to drilling risks including gas invasion, kick, and even blowout, which may result in enormous financial losses such as in the Deepwater Horizon tragedy. Therefore, accurate prediction of formation pore pressure in the process of drilling is conducive to ensuring drilling safety, improving rate of penetration (ROP), protecting the reservoir, and improving oil and gas recovery (Lei and Jie, 2004).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gaos发布了新的文献求助10
刚刚
坦率的可仁完成签到,获得积分10
1秒前
司徒迎曼完成签到,获得积分10
1秒前
烟花应助激情的一斩采纳,获得10
1秒前
天天快乐应助11采纳,获得10
2秒前
36456657应助八九采纳,获得50
2秒前
潦草完成签到,获得积分20
2秒前
华仔应助科研通管家采纳,获得10
2秒前
freesialll完成签到 ,获得积分10
2秒前
深情安青应助科研通管家采纳,获得30
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得20
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
摇摇晃晃完成签到 ,获得积分10
3秒前
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
贪玩手链应助科研通管家采纳,获得20
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
李健的小迷弟应助liyi采纳,获得10
4秒前
华仔应助科研通管家采纳,获得20
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得20
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740