Real-Time Prediction of Formation Pore Pressure Using Hybrid LSTM-BP Model

人工神经网络 钻探 计算机科学 孔隙水压力 人工智能 超参数 测井 数据挖掘 石油工程 地质学 材料科学 岩土工程 冶金
作者
Xuezhe Yao,Xianzhi Song,Liang Han,Haolin Zhang,Zhaopeng Zhu,Baoyu Li,Rui Zhang
出处
期刊:50th U.S. Rock Mechanics/Geomechanics Symposium 被引量:3
标识
DOI:10.56952/arma-2023-0130
摘要

ABSTRACT Accurate and real-time prediction of formation pore pressure is critical to ensure drilling safety. However, the performance of the most traditional formation pore pressure calculation methods are not satisfied in field applications due to their limited accuracy and time-effectiveness. In this paper, a novel artificial intelligence model is proposed to accurately predict formation pore pressure in real-time. First, the dataset for model training is prepared after handling the outliers and missing values of the drilling and logging data, which collected from 12 wells in Tarim Basin. And the logging data of the offset well is used to develop a logging data prediction model for the well under drilling based on the error Back Propagation Neural Network (BPNN). Then, a hybrid model is created by combining the Long Short-Term Memory Neural Network (LSTM) and the BPNN. Finally, the hybrid LSTM-BP model is trained and validated on the drilling and logging dataset, and the grid search algorithm is used to optimize the hyperparameters of the model. The hybrid LSTM-BP model is utilized to estimate formation pore pressure by inputting the drilling data of the well under drilling and longing data of the BPNN model predicted. The results indicate that the relative error of formation pore pressure prediction is less than 10%. This paper provides an accurate method to predict formation pore pressure in real-time, which is of great significance for maintaining the stability of the wellbore and ensuring the safety of drilling. INTRODUCTION Formation pore pressure is the pressure of the fluid in the formation, which is one of the most crucial fundamental data in the process of petroleum exploration and development, and a crucial foundation for the design of drilling plans and the analysis of wellbore stability (Azadpour et al., 2015; de Souza et al., 2021). However, when formation pore pressure is predicted incorrectly, it can lead to drilling risks including gas invasion, kick, and even blowout, which may result in enormous financial losses such as in the Deepwater Horizon tragedy. Therefore, accurate prediction of formation pore pressure in the process of drilling is conducive to ensuring drilling safety, improving rate of penetration (ROP), protecting the reservoir, and improving oil and gas recovery (Lei and Jie, 2004).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼睛大雨筠应助执着谷兰采纳,获得30
1秒前
lei应助YC采纳,获得20
1秒前
汉堡包应助伶俐芙采纳,获得10
1秒前
1秒前
2秒前
Ava应助胖达采纳,获得10
2秒前
2秒前
2秒前
HuFan1201完成签到 ,获得积分10
3秒前
后来发布了新的文献求助10
3秒前
geostar发布了新的文献求助10
4秒前
笑点低灵槐完成签到,获得积分10
5秒前
6秒前
Alice发布了新的文献求助10
7秒前
zyw0532完成签到,获得积分10
7秒前
melone发布了新的文献求助10
7秒前
HJY完成签到,获得积分10
8秒前
8秒前
胖达完成签到,获得积分10
8秒前
8秒前
9秒前
May应助哈哈哈采纳,获得10
9秒前
斯文败类应助龙哥采纳,获得10
9秒前
9秒前
倪晓琳完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
香蕉觅云应助AHR采纳,获得10
12秒前
12秒前
12秒前
在水一方应助AHR采纳,获得10
12秒前
Akim应助AHR采纳,获得10
12秒前
852应助AHR采纳,获得10
12秒前
12秒前
shawfang发布了新的文献求助10
12秒前
YC完成签到,获得积分10
12秒前
13秒前
杨琳发布了新的文献求助10
13秒前
后来完成签到,获得积分10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961351
求助须知:如何正确求助?哪些是违规求助? 3507711
关于积分的说明 11137438
捐赠科研通 3240131
什么是DOI,文献DOI怎么找? 1790762
邀请新用户注册赠送积分活动 872504
科研通“疑难数据库(出版商)”最低求助积分说明 803271