亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-Time Prediction of Formation Pore Pressure Using Hybrid LSTM-BP Model

人工神经网络 钻探 计算机科学 孔隙水压力 人工智能 超参数 测井 数据挖掘 石油工程 地质学 材料科学 岩土工程 冶金
作者
Xuezhe Yao,Xianzhi Song,Liang Han,Haolin Zhang,Zhaopeng Zhu,Baoyu Li,Rui Zhang
出处
期刊:50th U.S. Rock Mechanics/Geomechanics Symposium 被引量:3
标识
DOI:10.56952/arma-2023-0130
摘要

ABSTRACT Accurate and real-time prediction of formation pore pressure is critical to ensure drilling safety. However, the performance of the most traditional formation pore pressure calculation methods are not satisfied in field applications due to their limited accuracy and time-effectiveness. In this paper, a novel artificial intelligence model is proposed to accurately predict formation pore pressure in real-time. First, the dataset for model training is prepared after handling the outliers and missing values of the drilling and logging data, which collected from 12 wells in Tarim Basin. And the logging data of the offset well is used to develop a logging data prediction model for the well under drilling based on the error Back Propagation Neural Network (BPNN). Then, a hybrid model is created by combining the Long Short-Term Memory Neural Network (LSTM) and the BPNN. Finally, the hybrid LSTM-BP model is trained and validated on the drilling and logging dataset, and the grid search algorithm is used to optimize the hyperparameters of the model. The hybrid LSTM-BP model is utilized to estimate formation pore pressure by inputting the drilling data of the well under drilling and longing data of the BPNN model predicted. The results indicate that the relative error of formation pore pressure prediction is less than 10%. This paper provides an accurate method to predict formation pore pressure in real-time, which is of great significance for maintaining the stability of the wellbore and ensuring the safety of drilling. INTRODUCTION Formation pore pressure is the pressure of the fluid in the formation, which is one of the most crucial fundamental data in the process of petroleum exploration and development, and a crucial foundation for the design of drilling plans and the analysis of wellbore stability (Azadpour et al., 2015; de Souza et al., 2021). However, when formation pore pressure is predicted incorrectly, it can lead to drilling risks including gas invasion, kick, and even blowout, which may result in enormous financial losses such as in the Deepwater Horizon tragedy. Therefore, accurate prediction of formation pore pressure in the process of drilling is conducive to ensuring drilling safety, improving rate of penetration (ROP), protecting the reservoir, and improving oil and gas recovery (Lei and Jie, 2004).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Innogen发布了新的文献求助10
11秒前
Innogen完成签到,获得积分10
20秒前
汉堡包应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
Everything完成签到,获得积分10
1分钟前
2分钟前
2分钟前
3分钟前
Yikao完成签到 ,获得积分10
4分钟前
ZIJUNZHAO完成签到 ,获得积分10
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
总是很简单完成签到 ,获得积分10
5分钟前
Ykaor完成签到 ,获得积分10
5分钟前
古铜完成签到 ,获得积分10
5分钟前
5分钟前
乐正文涛发布了新的文献求助10
5分钟前
ajing完成签到,获得积分10
5分钟前
QYQ完成签到 ,获得积分10
5分钟前
msk完成签到 ,获得积分10
6分钟前
乐正怡完成签到 ,获得积分10
6分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
FMHChan完成签到,获得积分10
7分钟前
cy0824完成签到 ,获得积分10
8分钟前
wodetaiyangLLL完成签到 ,获得积分10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
9分钟前
铭铭完成签到 ,获得积分10
9分钟前
FashionBoy应助科研通管家采纳,获得10
11分钟前
shhoing应助科研通管家采纳,获得10
11分钟前
科研通AI6应助科研通管家采纳,获得10
11分钟前
Attaa完成签到,获得积分10
12分钟前
12分钟前
木木发布了新的文献求助10
12分钟前
12分钟前
12分钟前
gexzygg应助科研通管家采纳,获得10
12分钟前
gexzygg应助科研通管家采纳,获得10
12分钟前
shhoing应助科研通管家采纳,获得10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561535
求助须知:如何正确求助?哪些是违规求助? 4646630
关于积分的说明 14678717
捐赠科研通 4587966
什么是DOI,文献DOI怎么找? 2517258
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461557