GPT-aided diagnosis on agricultural image based on a new light YOLOPC

计算机科学 人工智能 农业 比例(比率) 领域(数学) 机器学习 图像(数学) 数据科学 地图学 地理 数学 考古 纯数学
作者
Jiajun Qing,Xiaoling Deng,Yubin Lan,Zhikai Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108168-108168 被引量:9
标识
DOI:10.1016/j.compag.2023.108168
摘要

Large Language Models (LLM) have been extensively studied for their ability to engage in textual dialogue and have shown promising results in various fields. However, the agricultural industry has yet to fully integrate LLM into its practice due to the dominance of visual images in agricultural data that cannot be effectively processed by LLM designed for text. Additionally, traditional image classification networks have limitations in understanding crop etiology and disease, hindering accurate diagnosis. Furthermore, the mixture of diseases can also interfere with the network's prediction. Therefore, accurately analyzing pests and diseases in agricultural scenarios and providing diagnostic reports remains a challenge. To address this issue, a novel approach that combines the deep logical reasoning capabilities of GPT-4 with the visual understanding capabilities of the YOLO (You Only Look Once) network was proposed in this study. Additionally, a new lightweight variant of YOLO, called YOLOPC, and a novel image-to-text mapping method for adapting YOLO and GPT were introduced. The experimental results demonstrate that YOLOPC, with approximately 75% fewer parameters than YOLOv5-nano, achieves a 94.5% accuracy rate. The GPT induction and reasoning module demonstrates 90% reasoning accuracy in generating agricultural diagnostic reports with text assistance. In the future, it is likely that a higher-performance GPT model will be released. The combination of GPT with agricultural scenarios will become the cornerstone of large-scale agricultural diagnostic models. The proposed method will benefit the development of large-scale models in the agricultural field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助ken采纳,获得10
1秒前
A3000发布了新的文献求助30
2秒前
2秒前
MrLBBB发布了新的文献求助10
2秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
4秒前
醋溜爆肚儿应助wwwwc采纳,获得20
4秒前
CipherSage应助annie采纳,获得10
5秒前
良辰应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得30
6秒前
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
情怀应助科研通管家采纳,获得10
6秒前
lemonlmm应助科研通管家采纳,获得50
6秒前
6秒前
7秒前
8秒前
9秒前
ycc完成签到,获得积分10
10秒前
11秒前
大模型应助cookie采纳,获得10
12秒前
joo发布了新的文献求助10
14秒前
ken发布了新的文献求助10
14秒前
乐乐应助皮皮虾采纳,获得10
15秒前
hihi发布了新的文献求助10
15秒前
15秒前
小二郎应助慈祥的乐菱采纳,获得10
15秒前
ysws完成签到,获得积分10
17秒前
上官若男应助chaoqi采纳,获得10
17秒前
18秒前
科研通AI2S应助whuhustwit采纳,获得10
18秒前
呦呦完成签到 ,获得积分10
20秒前
AoAoo发布了新的文献求助10
21秒前
NexusExplorer应助李月采纳,获得10
22秒前
今后应助等风来采纳,获得10
23秒前
煮饭吃Zz发布了新的文献求助10
23秒前
cookie发布了新的文献求助10
23秒前
Thunnus001完成签到,获得积分10
23秒前
cool完成签到,获得积分20
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159748
求助须知:如何正确求助?哪些是违规求助? 2810660
关于积分的说明 7889023
捐赠科研通 2469717
什么是DOI,文献DOI怎么找? 1315035
科研通“疑难数据库(出版商)”最低求助积分说明 630738
版权声明 602012